
First steps
• Introduction
• Using scripts

• Loading scripts from the chart
• Browsing Community Scripts
• Changing script settings

• Reading scripts
• Writing scripts

Introduction
Welcome to the Pine Script® v5 User Manual, which will accompany you in your journey to learn
to program your own trading tools in Pine Script®. Welcome also to the very active community of
Pine Script® programmers on TradingView.

In this page, we present a step-by-step approach that you can follow to gradually become more
familiar with indicators and strategies (also called scripts) written in the Pine Script® programming
language on TradingView. We will get you started on your journey to:

1. Use some of the tens of thousands of existing scripts on the platform.
2. Read the Pine Script® code of existing scripts.
3. Write Pine Script® scripts.

If you are already familiar with the use of Pine scripts on TradingView and are now ready to learn
how to write your own, then jump to the Writing scripts section of this page.

If you are new to our platform, then please read on!

Using scripts
If you are interested in using technical indicators or strategies on TradingView, you can first start
exploring the thousands of indicators already available on our platform. You can access existing
indicators on the platform in two different ways:

• By using the chart’s “Indicators & Strategies” button, or
• By browsing TradingView’s Community Scripts, the largest repository of trading scripts in

the world, with more than 100,000 scripts, most of which are free and open-source, which
means you can see their Pine Script® code.

If you can find the tools you need already written for you, it can be a good way to get started and
gradually become proficient as a script user, until you are ready to start your programming journey
in Pine Script®.

Loading scripts from the chart

To explore and load scripts from you chart, use the “Indicators & Strategies” button:

https://www.tradingview.com/pine-script-docs/en/v5/primer/First_steps.html#introduction
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_steps.html#id3
https://www.tradingview.com/scripts/
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_steps.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_steps.html#pagefirstindicator-writingscripts
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/index.html
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_steps.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_steps.html#writing-scripts
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_steps.html#reading-scripts
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_steps.html#changing-script-settings
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_steps.html#browsing-community-scripts
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_steps.html#loading-scripts-from-the-chart
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_steps.html#using-scripts

The dialog box presents different categories of scripts in its left pane:

• Favorites lists the scripts you have “favorited” by clicking on the star that appears to the left
of its name when you mouse over it.

• My scripts displays the scipts you have written and saved in the Pine Script® Editor. They
are saved in TradingView’s cloud.

• Built-ins groups all TradingVIew built-ins organized in four categories: indicators,
strategies, candlestick patterns and volume profiles. Most are written in Pine Script® and
available for free.

• Community Scripts is where you can search from the 100,000+ published scripts written
by TradingView users.

• Invite-only scripts contains the list of the invite-only scripts you have been granted access
to by their authors.

Here, the section containing the TradingView built-ins is selected:

When you click on one of the indicators or strategies (the ones with the green and red arrows
following their name), it loads on your chart.

Browsing Community Scripts

From TradingView’s homepage, you can bring up the Community Scripts stream from the
“Community” menu. Here, we are pointing to the “Editors’ Picks” section, but there are many other
categories you can choose from:

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_steps.html#id4

You can also search for scripts using the homepage’s “Search” field, and filter scripts using different
criteria. The Help Center has a page explaining the different types of scripts that are available.

https://www.tradingview.com/support/solutions/43000558522

The scripts stream shows script widgets, i.e., placeholders showing a miniature view of each
publication’s chart and description, and its author. By clicking on it you will open the script’s page,
where you can see the script on a chart, read the author’s description, like the script, leave
comments or read the script’s source code if it was published open-source.

Once you find an interesting script in the Community Scripts, follow the instructions in the Help
Center to load it on your chart.

Changing script settings

Once a script is loaded on the chart, you can double-click on its name (#1) to bring up its
“Settings/Inputs” tab (#2):

The “Inputs” tab allows you to change the settings which the script’s author has decided to make
editable. You can configure some of the script’s visuals using the “Style” tab of the same dialog

https://www.tradingview.com/pine-script-docs/en/v5/primer/First_steps.html#id5
https://www.tradingview.com/support/solutions/43000555216

box, and which timeframes the script should appear on using the “Visibility” tab.

Other settings are available to all scripts from the buttons that appear to the right of its name when
you mouse over it, and from the “More” menu (the three dots):

Reading scripts
Reading code written by good programmers is the best way to develop your understanding of the
language. This is as true for Pine Script® as it is for all other programming languages. Finding good
open-source Pine Script® code is relatively easy. These are reliable sources of code written by good
programmers on TradingView:

• The TradingView built-in indicators
• Scripts selected as Editors’ Picks

https://www.tradingview.com/scripts/editors-picks/
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_steps.html#id6

• Scripts by the authors the PineCoders account follows
• Many scripts by authors with high reputation and open-source publications.

Reading code from Community Scripts is easy; if you don’t see a grey or red “lock” icon in the
upper-right corner of the script’s widget, this indicates the script is open-source. By opening its
script page, you will be able to see its source.

To see the code of TradingView built-ins, load the indicator on your chart, then hover over its name
and select the “Source code” curly braces icon (if you don’t see it, it’s because the indicator’s
source is unavailable). When you click on the icon, the Pine Script® Editor will open and from
there, you can see the script’s code. If you want to play with it, you will need to use the Editor’s
“More” menu button at the top-right of the Editor’s pane, and select “Make a copy…”. You will
then be able to modify and save the code. Because you will have created a different version of the
script, you will need to use the Editor’s “Add to Chart” button to add that new copy to the chart.

This shows the Pine Script® Editor having just opened after we selected the “View source” button
from the indicator on our chart. We are about to make a copy of its source because it is read-only for
now (indicated by the “lock” icon near its filename in the Editor):

https://www.tradingview.com/scripts/
https://www.tradingview.com/u/PineCoders/#following-people

You can also open TradingView built-in indicators from the Pine Script® Editor (accessible from
the “Pine Script® Editor” tab at the bottom of the chart) by using the “Open/New default built-in
script…” menu selection.

Writing scripts
We have built Pine Script® to empower both budding and seasoned traders to create their own
trading tools. We have designed it so it is relatively easy to learn for first-time programmers —
although learning a first programming language, like trading, is rarely very easy for anyone — yet
powerful enough for knowledgeable programmers to build tools of moderate complexity.

https://www.tradingview.com/pine-script-docs/en/v5/primer/First_steps.html#id7

Pine Script® allows you to write three types of scripts:

• Indicators like RSI, MACD, etc.
• Strategies which include logic to issue trading orders and can be backtested and forward-

tested.
• Libraries which are used by more advanced programmers to package oft-used functions

that can be reused by other scripts.

The next step we recommend is to write your first indicator.

First indicator
• The Pine Script ® Editor
• First version
• Second version
• Next

The Pine Script ® Editor
The Pine Script® Editor is where you will be working on your scripts. While you can use any text
editor you want to write your Pine scripts, using our Editor has many advantages:

• It highlights your code following Pine Script® syntax.
• It pops up syntax reminders for built-in and library functions when you hover over them.
• It provides quick access to the Pine Script® v5 Reference Manual popup when you ctrl +

click / cmd + click on Pine Script® keywords.
• It provides an auto-complete feature that you can activate with ctrl + space / cmd +
space.

• It makes the write/compile/run cycle fast because saving a new version of a script loaded on
the chart also executes it immediately.

• While not as feature-rich as the top editors out there, it provides key functionality such as
search and replace, multi-cursor and versioning.

To open the Editor, click on the “Pine Script® Editor” tab at the bottom of your TradingView chart.
This will open up the Editor’s pane.

First version
We will now create our first working Pine script, an implementation of the MACD indicator in Pine
Script®:

 2
 3
 4
 5
 6
 7
 8
 9
10

//@version=5
indicator("MACD #1")
fast = 12
slow = 26
fastMA = ta.ema(close, fast)
slowMA = ta.ema(close, slow)
macd = fastMA - slowMA
signal = ta.ema(macd, 9)
plot(macd, color = color.blue)

https://www.tradingview.com/support/solutions/43000502344-macd-moving-average-convergence-divergence/
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_indicator.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_indicator.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_indicator.html#next
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_indicator.html#second-version
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_indicator.html#first-version
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_indicator.html#the-pine-script-editor
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_indicator.html#pagefirstindicator

plot(signal, color = color.orange)

• Start by bringing up the “Open” dropdown menu at the top right of the Editor and choose
“New blank indicator”.

• Then copy the example script above, taking care not to include the line numbers in your
selection.

• Select all the code already in the editor and replace it with the example script.
• Click “Save” and choose a name for your script. Your script is now saved in TradingView’s

cloud, but under your account’s name. Nobody but you can use it.
• Click “Add to Chart” in the Editor’s menu bar. The MACD indicator appears in a separate

Pane under your chart.

Your first Pine script is running on your chart, which should look like this:

Let’s look at our script’s code, line by line:

Line 1: //@version=5

This is a compiler annotation telling the compiler the script will use version 5 of Pine Script®.
Line 2: indicator("MACD #1")

Defines the name of the script that will appear on the chart as “MACD”.
Line 3: fast = 12

Defines a fast integer variable which will be the length of the fast EMA.
Line 4: slow = 26

Defines a slow integer variable which will be the length of the slow EMA.
Line 5: fastMA = ta.ema(close, fast)

Defines the variable fastMA, containing the result of the EMA calculation (Exponential
Moving Average) with a length equal to fast (12), on the close series, i.e., the closing
price of bars.

Line 6: slowMA = ta.ema(close, slow)
Defines the variable slowMA, containing the result of the EMA calculation with a length
equal to slow (26), from close.

Line 7: macd = fastMA - slowMA
Defines the variable macd as the difference between the two EMAs.

Line 8: signal = ta.ema(macd, 9)
Defines the variable signal as a smoothed value of macd using the EMA algorithm
(Exponential Moving Average) with a length of 9.

Line 9: plot(macd, color = color.blue)
Calls the plot function to output the variable macd using a blue line.

Line 10: plot(signal, color = color.orange)
Calls the plot function to output the variable signal using an orange line.

Second version
The first version of our script calculated MACD “manually”, but because Pine Script® is designed
to write indicators and strategies, built-in Pine Script® functions exist for many common indicators,
including one for… MACD: ta.macd().

This is the second version of our script:

https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dmacd
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_indicator.html#id3
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#pagescriptstructure-compilerannotations

1
2
3
4
5
6
7

//@version=5
indicator("MACD #2")
fastInput = input(12, "Fast length")
slowInput = input(26, "Slow length")
[macdLine, signalLine, histLine] = ta.macd(close, fastInput, slowInput, 9)
plot(macdLine, color = color.blue)
plot(signalLine, color = color.orange)

Note that we have:

• Added inputs so we can change the lengths for the MAs
• We now use the ta.macd() built-in to calculate our MACD, which saves us three line and

makes our code easier to read.

Let’s repeat the same process as before to copy that code in a new indicator:

• Start by bringing up the “Open” dropdown menu at the top right of the Editor and choose
“New blank indicator”.

• Then copy the example script above, again taking care not to include the line numbers in
your selection.

• Select all the code already in the editor and replace it with the second version of our script.
• Click “Save” and choose a name for your script different than the previous one.
• Click “Add to Chart” in the Editor’s menu bar. The “MACD #2” indicator appears in a

separate Pane under the “MACD #1” indicator.

Your second Pine script is running on your chart. If you double-click on the indicator’s name on
your chart, you will bring up the script’s “Settings/Inputs” tab, where you can now change the slow
and fast lengths:

Let’s look at the lines that have changed in the second version of our script:

Line 2: indicator("MACD #2")
We have changed #1 to #2 so the second version of our indicator displays a different name
on the chart.

Line 3: fastInput = input(12, "Fast length")
Instead of assigning a constant value to a variable, we have used the input() function so we
can change the value in our script’s “Settings/Inputs” tab. 12 will be the default value and the
field’s label will be "Fast length". If the value is changed in the “Inputs” tab, the
fastInput variable’s content will contain the new value and the script will re-execute on

the chart with that new value. Note that, as our Pine Script® Style Guide recommends, we add
Input to the end of the variable’s name to remind us, later in the script, that its value comes
from a user input.

Line 4: slowInput = input(26, "Slow length")
We do the same for the slow length, taking care to use a different variable name, default value
and text string for the field’s label.

Line 5: [macdLine, signalLine, histLine] = ta.macd(close, fastInput,
slowInput, 9)

This is where we call the ta.macd() built-in to perform all the first version’s calculations in
one line only. The function requires four parameters (the values after the function name,
enclosed in parentheses). It returns three values into the three variables instead of only one,
like the functions we used until now, which is why we need to enclose the list of three
variables receiving the function’s result in square brackets, to the left of the = sign. Note that

https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dmacd
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#pagestyleguide
https://www.tradingview.com/pine-script-reference/v5/#fun_input
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dmacd

two of the values we pass to the function are the “input” variables containing the fast and
slow lengths: fastInput and slowInput.

Line 6 and 7:
The variable names we are plotting there have changed, but the lines are doing the same thing
as in our first version.

Our second version performs the same calculations as our first, but we can change the two lengths
used to calculate it. Our code is also simpler and shorter by three lines. We have improved our
script.

Next steps
• “indicators” vs “strategies”
• How scripts are executed
• Time series
• Publishing scripts
• Getting around the Pine Script ® documentation
• Where to go from here?

After your first steps and your first indicator, let us explore a bit more of the Pine Script® landscape
by sharing some pointers to guide you in your journey to learn Pine Script®.

“indicators” vs “strategies”
Pine Script® strategies are used to backtest on historical data and forward test on open markets. In
addition to indicator calculations, they contain strategy.*() calls to send trade orders to Pine

Script®’s broker emulator, which can then simulate their execution. Strategies display backtest
results in the “Strategy Tester” tab at the bottom of the chart, next to the “Pine Script® Editor” tab.

Pine Script® indicators also contain calculations, but cannot be used in backtesting. Because they do
not require the broker emulator, they use less resources and will run faster. It is thus advantageous
to use indicators whenever you can.

Both indicators and strategies can run in either overlay mode (over the chart’s bars) or pane mode
(in a separate section below or above the chart). Both can also plot information in their respective
space, and both can generate alert events.

How scripts are executed
A Pine script is not like programs in many programming languages that execute once and then stop.
In the Pine Script® runtime environment, a script runs in the equivalent of an invisible loop where it
is executed once on each bar of whatever chart you are on, from left to right. Chart bars that have
already closed when the script executes on them are called historical bars. When execution reaches
the chart’s last bar and the market is open, it is on the realtime bar. The script then executes once
every time a price or volume change is detected, and one last time for that realtime bar when it
closes. That realtime bar then becomes an elapsed realtime bar. Note that when the script executes
in realtime, it does not recalculate on all the chart’s historical bars on every price/volume update. It
has already calculated once on those bars, so it does not need to recalculate them on every chart
tick. See the Execution model page for more information.

https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel
https://www.tradingview.com/pine-script-docs/en/v5/primer/Next_steps.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#pagealerts
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#pagestrategies
https://www.tradingview.com/pine-script-docs/en/v5/primer/Next_steps.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_indicator.html#pagefirstindicator
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_steps.html#pagefirststeps
https://www.tradingview.com/pine-script-docs/en/v5/primer/Next_steps.html#where-to-go-from-here
https://www.tradingview.com/pine-script-docs/en/v5/primer/Next_steps.html#getting-around-the-pine-script-documentation
https://www.tradingview.com/pine-script-docs/en/v5/primer/Next_steps.html#publishing-scripts
https://www.tradingview.com/pine-script-docs/en/v5/primer/Next_steps.html#time-series
https://www.tradingview.com/pine-script-docs/en/v5/primer/Next_steps.html#how-scripts-are-executed
https://www.tradingview.com/pine-script-docs/en/v5/primer/Next_steps.html#indicators-vs-strategies

When a script executes on a historical bar, the close built-in variable holds the value of that bar’s
close. When a script executes on the realtime bar, close returns the current price of the symbol until
the bar closes.

Contrary to indicators, strategies normally execute only once on realtime bars, when they close.
They can also be configured to execute on each price/volume update if that is what you need. See
the page on Strategies for more information, and to understand how strategies calculate differently
than indicators.

Time series
The main data structure used in Pine Script® is called a time series. Time series contain one value
for each bar the script executes on, so they continuously expand as the script executes on more bars.
Past values of the time series can be referenced using the history-referencing operator: [].
close[1], for example, refers to the value of close on the bar preceding the one where the script
is executing.

While this indexing mechanism may remind many programmers of arrays, a time series is different
and thinking in terms of arrays will be detrimental to understanding this key Pine Script® concept.
A good comprehension of both the execution model and time series is essential in understanding
how Pine scripts work. If you have never worked with data organized in time series before, you will
need practice to put them to work for you. Once you familiarize yourself with these key concepts,
you will discover that by combining the use of time series with our built-in functions specifically
designed to handle them efficiently, much can be accomplished in very few lines of code.

Publishing scripts
TradingView is home to a large community of Pine Script® programmers and millions of traders
from all around the world. Once you become proficient enough in Pine Script®, you can choose to
share your scripts with other traders. Before doing so, please take the time to learn Pine Script®
well-enough to supply traders with an original and reliable tool. All publicly published scripts are
analyzed by our team of moderators and must comply with our Script Publishing Rules, which
require them to be original and well-documented.

If want to use Pine scripts for your own use, simply write them in the Pine Script® Editor and add
them to your chart from there; you don’t have to publish them to use them. If you want to share
your scripts with just a few friends, you can publish them privately and send your friends the
browser’s link to your private publication. See the page on Publishing for more information.

Getting around the Pine Script ® documentation
While reading code from published scripts is no doubt useful, spending time in our documentation
will be necessary to attain any degree of proficiency in Pine Script®. Our two main sources of
documentation on Pine Script® are:

• This Pine Script® v5 User Manual
• Our Pine Script® v5 Reference Manual

The Pine Script® v5 User Manual is in HTML format and in English only.

The Pine Script® v5 Reference Manual documents what each variable, function or keyword does. It
is an essential tool for all Pine Script® programmers; your life will be miserable if you try to write

https://www.tradingview.com/pine-script-reference/v5/
https://www.tradingview.com/pine-script-docs/en/v5/index.html
https://www.tradingview.com/pine-script-reference/v5/
https://www.tradingview.com/pine-script-docs/en/v5/index.html
https://www.tradingview.com/pine-script-docs/en/v5/primer/Next_steps.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#pagepublishing
https://www.tradingview.com/support/solutions/43000590599
https://www.tradingview.com/pine-script-docs/en/v5/primer/Next_steps.html#id4
https://www.tradingview.com/pine-script-docs/en/v5/language/Time_series.html#pagetimeseries
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-docs/en/v5/language/Time_series.html#pagetimeseries
https://www.tradingview.com/pine-script-docs/en/v5/primer/Next_steps.html#id3
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#pagestrategies
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_close

scripts of any reasonable complexity without consulting it. It exists in two formats: the HTML
format we just linked to, and the popup version, which can be accessed from the Pine Script®
Editor, by either ctrl + clicking on a keyword, or by using the Editor’s “More/Pine Script®
reference (pop-up)” menu. The Reference Manual is translated in other languages.

There are five different versions of Pine Script®. Ensure the documentation you use corresponds to
the Pine Script® version you are coding with.

Where to go from here?
This Pine Script® v5 User Manual contains numerous examples of code used to illustrate the
concepts we discuss. By going through it, you will be able to both learn the foundations of Pine
Script® and study the example scripts. Reading about key concepts and trying them out right away
with real code is a productive way to learn any programming language. As you hopefully have
already done in the First indicator page, copy this documentation’s examples in the Editor and play
with them. Explore! You won’t break anything.

This is how the Pine Script® v5 User Manual you are reading is organized:

• The Language section explains the main components of the Pine Script® language and how
scripts execute.

• The Concepts section is more task-oriented. It explains how to do things in Pine Script®.
• The Writing section explores tools and tricks that will help you write and publish scripts.
• The FAQ section answers common questions from Pine Script® programmers.
• The Error messages page documents causes and fixes for the most common runtime and

compiler errors.
• The Release Notes page is where you can follow the frequent updates to Pine Script®.
• The Migration guides section explains how to port between different versions of Pine

Script®.
• The Where can I get more information page lists other useful Pine Script®-related content,

including where to ask questions when you are stuck on code.

We wish you a successful journey with Pine Script®… and trading!

Execution model
• Calculation based on historical bars
• Calculation based on realtime bars
• Events triggering the execution of a script
• More information
• Historical values of functions

• Why this behavior?
• Exceptions

The execution model of the Pine Script® runtime is intimately linked to Pine Script®’s time series
and type system. Understanding all three is key to making the most of the power of Pine Script®.

The execution model determines how your script is executed on charts, and thus how the code you
write in scripts works. Your code would do nothing were it not for Pine Script®’s runtime, which
kicks in after your code has compiled and it is executed on your chart because one of the events

https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel-events
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem
https://www.tradingview.com/pine-script-docs/en/v5/language/Time_series.html#pagetimeseries
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#exceptions
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#why-this-behavior
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#historical-values-of-functions
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#more-information
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#events-triggering-the-execution-of-a-script
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#calculation-based-on-realtime-bars
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#calculation-based-on-historical-bars
https://www.tradingview.com/pine-script-docs/en/v5/Where_can_I_get_more_information.html#pagewherecanigetmoreinformation
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/index.html#indexmigrationguides
https://www.tradingview.com/pine-script-docs/en/v5/Release_notes.html#pagereleasenotes
https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#pageerrormessages
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#pagefaq
https://www.tradingview.com/pine-script-docs/en/v5/writing/index.html#indexwriting
https://www.tradingview.com/pine-script-docs/en/v5/concepts/index.html#indexconcepts
https://www.tradingview.com/pine-script-docs/en/v5/language/index.html#indexlanguage
https://www.tradingview.com/pine-script-docs/en/v5/index.html
https://www.tradingview.com/pine-script-docs/en/v5/primer/First_indicator.html#pagefirstindicator
https://www.tradingview.com/pine-script-docs/en/v5/index.html
https://www.tradingview.com/pine-script-docs/en/v5/primer/Next_steps.html#id6

triggering the execution of a script has occurred.

When a Pine script is loaded on a chart it executes once on each historical bar using the available
OHLCV (open, high, low, close, volume) values for each bar. Once the script’s execution reaches
the rightmost bar in the dataset, if trading is currently active on the chart’s symbol, then Pine
Script® indicators will execute once every time an update occurs, i.e., price or volume changes.
Pine Script® strategies will by default only execute when the rightmost bar closes, but they can also
be configured to execute on every update, like indicators do.

All symbol/timeframe pairs have a dataset comprising a limited number of bars. When you scroll a
chart to the left to see the dataset’s earlier bars, the corresponding bars are loaded on the chart. The
loading process stops when there are no more bars for that particular symbol/timeframe pair or the
maximum number of bars your account type permits has been loaded. You can scroll the chart to the
left until the very first bar of the dataset, which has an index value of 0 (see bar_index).

When the script first runs on a chart, all bars in a dataset are historical bars, except the rightmost
one if a trading session is active. When trading is active on the rightmost bar, it is called the
realtime bar. The realtime bar updates when a price or volume change is detected. When the
realtime bar closes, it becomes an elapsed realtime bar and a new realtime bar opens.

Calculation based on historical bars
Let’s take a simple script and follow its execution on historical bars:

//@version=5
indicator("My Script", overlay = true)
src = close
a = ta.sma(src, 5)
b = ta.sma(src, 50)
c = ta.cross(a, b)
plot(a, color = color.blue)
plot(b, color = color.black)
plotshape(c, color = color.red)

On historical bars, a script executes at the equivalent of the bar’s close, when the OHLCV values
are all known for that bar. Prior to execution of the script on a bar, the built-in variables such as
open, high, low, close, volume and time are set to values corresponding to those from that
bar. A script executes once per historical bar.

Our example script is first executed on the very first bar of the dataset at index 0. Each statement is
executed using the values for the current bar. Accordingly, on the first bar of the dataset, the
following statement:

src = close

initializes the variable src with the close value for that first bar, and each of the next lines is
executed in turn. Because the script only executes once for each historical bar, the script will always
calculate using the same close value for a specific historical bar.

The execution of each line in the script produces calculations which in turn generate the indicator’s
output values, which can then be plotted on the chart. Our example uses the plot and
plotshape calls at the end of the script to output some values. In the case of a strategy, the
outcome of the calculations can be used to plot values or dictate the orders to be placed.

After execution and plotting on the first bar, the script is executed on the dataset’s second bar,
which has an index of 1. The process then repeats until all historical bars in the dataset are
processed and the script reaches the rightmost bar on the chart.

https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#id6
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#chart-bars
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel-events

Calculation based on realtime bars
The behavior of a Pine script on the realtime bar is very different than on historical bars. Recall that
the realtime bar is the rightmost bar on the chart when trading is active on the chart’s symbol. Also,
recall that strategies can behave in two different ways in the realtime bar. By default, they only
execute when the realtime bar closes, but the calc_on_every_tick parameter of the
strategy declaration statement can be set to true to modify the strategy’s behavior so that it

https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#id7

executes each time the realtime bar updates, as indicators do. The behavior described here for
indicators will thus only apply to strategies using calc_on_every_tick=true.

The most important difference between execution of scripts on historical and realtime bars is that
while they execute only once on historical bars, scripts execute every time an update occurs during
a realtime bar. This entails that built-in variables such as high, low and close which never
change on a historical bar, can change at each of a script’s iteration in the realtime bar. Changes in
the built-in variables used in the script’s calculations will, in turn, induce changes in the results of
those calculations. This is required for the script to follow the realtime price action. As a result, the
same script may produce different results every time it executes during the realtime bar.

Note: In the realtime bar, the close variable always represents the current price. Similarly, the
high and low built-in variables represent the highest high and lowest low reached since the

realtime bar’s beginning. Pine Script®’s built-in variables will only represent the realtime bar’s final
values on the bar’s last update.

Let’s follow our script example in the realtime bar.

When the script arrives on the realtime bar it executes a first time. It uses the current values of the
built-in variables to produce a set of results and plots them if required. Before the script executes
another time when the next update happens, its user-defined variables are reset to a known state
corresponding to that of the last commit at the close of the previous bar. If no commit was made on
the variables because they are initialized every bar, then they are reinitialized. In both cases their
last calculated state is lost. The state of plotted labels and lines is also reset. This resetting of the
script’s user-defined variables and drawings prior to each new iteration of the script in the realtime
bar is called rollback. Its effect is to reset the script to the same known state it was in when the
realtime bar opened, so calculations in the realtime bar are always performed from a clean state.

The constant recalculation of a script’s values as price or volume changes in the realtime bar can
lead to a situation where variable c in our example becomes true because a cross has occurred, and
so the red marker plotted by the script’s last line would appear on the chart. If on the next price
update the price has moved in such a way that the close value no longer produces calculations
making c true because there is no longer a cross, then the marker previously plotted will disappear.

When the realtime bar closes, the script executes a last time. As usual, variables are rolled back
prior to execution. However, since this iteration is the last one on the realtime bar, variables are
committed to their final values for the bar when calculations are completed.

To summarize the realtime bar process:

• A script executes at the open of the realtime bar and then once per update.
• Variables are rolled back before every realtime update.
• Variables are committed once at the closing bar update.

Events triggering the execution of a script
A script is executed on the complete set of bars on the chart when one of the following events
occurs:

• A new symbol or timeframe is loaded on a chart.
• A script is saved or added to the chart, from the Pine Script® Editor or the chart’s

“Indicators & strategies” dialog box.
• A value is modified in the script’s “Settings/Inputs” dialog box.
• A value is modified in a strategy’s “Settings/Properties” dialog box.
• A browser refresh event is detected.

https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#id8

A script is executed on the realtime bar when trading is active and:

• One of the above conditions occurs, causing the script to execute on the open of
the realtime bar, or

• The realtime bar updates because a price or volume change was detected.

Note that when a chart is left untouched when the market is active, a succession of realtime bars
which have been opened and then closed will trail the current realtime bar. While these elapsed
realtime bars will have been confirmed because their variables have all been committed, the script
will not yet have executed on them in their historical state, since they did not exist when the script
was last run on the chart’s dataset.

When an event triggers the execution of the script on the chart and causes it to run on those bars
which have now become historical bars, the script’s calculation can sometimes vary from what they
were when calculated on the last closing update of the same bars when they were realtime bars. This
can be caused by slight variations between the OHLCV values saved at the close of realtime bars
and those fetched from data feeds when the same bars have become historical bars. This behavior is
one of the possible causes of repainting.

More information
• The built-in barstate.* variables provide information on the type of bar or the event

where the script is executing. The page where they are documented also contains a script
that allows you to visualize the difference between elapsed realtime and historical bars, for
example.

• The Strategies page explains the details of strategy calculations, which are not identical to
those of indicators.

Historical values of functions
Every function call in Pine leaves a trail of historical values that a script can access on subsequent
bars using the [] operator. The historical series of functions depend on successive calls to record the
output on every bar. When a script does not call functions on each bar, it can produce an
inconsistent history that may impact calculations and results, namely when it depends on the
continuity of their historical series to operate as expected. The compiler warns users in these cases
to make them aware that the values from a function, whether built-in or user-defined, might be
misleading.

To demonstrate, let’s write a script that calculates the index of the current bar and outputs that value
on every second bar. In the following script, we’ve defined a calcBarIndex() function that
adds 1 to the previous value of its internal index variable on every bar. The script calls the
function on each bar that the condition returns true on (every other bar) to update the
customIndex value. It plots this value alongside the built-in bar_index to validate the output:

//@version=5
indicator("My script")

//@function Calculates the index of the current bar by adding 1 to its own value
from the previous bar.
// The first bar will have an index of 0.
calcBarIndex() =>
 int index = na

https://www.tradingview.com/pine-script-reference/v5/#op_%5B%5D
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#id10
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#pagestrategies
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#pagebarstates
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#id9

 index := nz(index[1], replacement = -1) + 1

//@variable Returns `true` on every other bar.
condition = bar_index % 2 == 0

int customIndex = na

// Call `calcBarIndex()` when the `condition` is `true`. This prompts the
compiler to raise a warning.
if condition
 customIndex := calcBarIndex()

plot(bar_index, "Bar index", color = color.green)
plot(customIndex, "Custom index", color = color.red, style = plot.style_cross)

Note that:

• The nz() function replaces na values with a specified replacement value (0 by default).
On the first bar of the script, when the index series has no history, the na value is replaced
with -1 before adding 1 to return an initial value of 0.

Upon inspecting the chart, we see that the two plots differ wildly. The reason for this behavior is
that the script called calcBarIndex() within the scope of an if structure on every other bar,
resulting in a historical output inconsistent with the bar_index series. When calling the function
once every two bars, internally referencing the previous value of index gets the value from two
bars ago, i.e., the last bar the function executed on. This behavior results in a customIndex value
of half that of the built-in bar_index.

To align the calcBarIndex() output with the bar_index, we can move the function call to
the script’s global scope. That way, the function will execute on every bar, allowing its entire
history to be recorded and referenced rather than only the results from every other bar. In the code
below, we’ve defined a globalScopeBarIndex variable in the global scope and assigned it to
the return from calcBarIndex() rather than calling the function locally. The script sets the
customIndex to the value of globalScopeBarIndex on the occurrence of the condition:

//@version=5
indicator("My script")

//@function Calculates the index of the current bar by adding 1 to its own value
from the previous bar.
// The first bar will have an index of 0.
calcBarIndex() =>
 int index = na
 index := nz(index[1], replacement = -1) + 1

//@variable Returns `true` on every second bar.
condition = bar_index % 2 == 0

globalScopeBarIndex = calcBarIndex()
int customIndex = na

// Assign `customIndex` to `globalScopeBarIndex` when the `condition` is `true`.
This won't produce a warning.
if condition
 customIndex := globalScopeBarIndex

plot(bar_index, "Bar index", color = color.green)
plot(customIndex, "Custom index", color = color.red, style = plot.style_cross)

https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_nz

This behavior can also radically impact built-in functions that reference history internally. For
example, the ta.sma() function references its past values “under the hood”. If a script calls this
function conditionally rather than on every bar, the values within the calculation can change
significantly. We can ensure calculation consistency by assigning ta.sma() to a variable in the global
scope and referencing that variable’s history as needed.

The following example calculates three SMA series: controlSMA, localSMA, and
globalSMA. The script calculates controlSMA in the global scope and localSMA within the
local scope of an if structure. Within the if structure, it also updates the value of globalSMA using
the controlSMA value. As we can see, the values from the globalSMA and controlSMA
series align, whereas the localSMA series diverges from the other two because it uses an
incomplete history, which affects its calculations:

//@version=5
indicator("My script")

//@variable Returns `true` on every second bar.
condition = bar_index % 2 == 0

controlSMA = ta.sma(close, 20)
float globalSMA = na
float localSMA = na

// Update `globalSMA` and `localSMA` when `condition` is `true`.
if condition
 globalSMA := controlSMA // No warning.
 localSMA := ta.sma(close, 20) // Raises warning. This function depends on
its history to work as intended.

plot(controlSMA, "Control SMA", color = color.green)
plot(globalSMA, "Global SMA", color = color.blue, style = plot.style_cross)
plot(localSMA, "Local SMA", color = color.red, style = plot.style_cross)

Why this behavior?

This behavior is required because forcing the execution of functions on each bar would lead to
unexpected results in those functions that produce side effects, i.e., the ones that do something aside
from returning the value. For example, the label.new() function creates a label on the chart, so
forcing it to be called on every bar even when it is inside of an if structure would create labels
where they should not logically appear.

Exceptions

Not all built-in functions use their previous values in their calculations, meaning not all require
execution on every bar. For example, math.max() compares all arguments passed into it to return the
highest value. Such functions that do not interact with their history in any way do not require
special treatment.

If the usage of a function within a conditional block does not cause a compiler warning, it’s safe to
use without impacting calculations. Otherwise, move the function call to the global scope to force
consistent execution. When keeping a function call within a conditional block despite the warning,
ensure the output is correct at the very least to avoid unexpected results.

https://www.tradingview.com/pine-script-reference/v5/#fun_math%7Bdot%7Dmax
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#id12
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#id11
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dsma
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dsma

Time series
Much of the power of Pine Script® stems from the fact that it is designed to process time series
efficiently. Time series are not a form or a type; they are the fundamental structure Pine Script®
uses to store the successive values of a variable over time, where each value is tethered to a point in
time. Since charts are composed of bars, each representing a particular point in time, time series are
the ideal data structure to work with values that may change with time.

The notion of time series is intimately linked to Pine Script®’s execution model and type system
concepts. Understanding all three is key to making the most of the power of Pine Script®.

Take the built-in open variable, which contains the “open” price of each bar in the dataset, the
dataset being all the bars on any given chart. If your script is running on a 5min chart, then each
value in the open time series is the “open” price of the consecutive 5min chart bars. When your
script refers to open, it is referring to the “open” price of the bar the script is executing on. To refer
to past values in a time series, we use the [] history-referencing operator. When a script is executing
on a given bar, open[1] refers to the value of the open time series on the previous bar.

While time series may remind programmers of arrays, they are totally different. Pine Script® does
use an array data structure, but it is a completely different concept than a time series.

Time series in Pine Script®, combined with its special type of runtime engine and built-in functions,
are what makes it easy to compute the cumulative total of close values without using a for loop,
with only ta.cum(close). This is possible because although ta.cum(close) appears rather
static in a script, it is in fact executed on each bar, so its value becomes increasingly larger as the
close value of each new bar is added to it. When the script reaches the rightmost bar of the chart,
ta.cum(close) returns the sum of the close value from all bars on the chart.

Similarly, the mean of the difference between the last 14 high and low values can be expressed as
ta.sma(high - low, 14), or the distance in bars since the last time the chart made five
consecutive higher highs as barssince(rising(high, 5)).

Even the result of function calls on successive bars leaves a trace of values in a time series that can
be referenced using the [] history-referencing operator. This can be useful, for example, when
testing the close of the current bar for a breach of the highest high in the last 10 bars, but excluding
the current bar, which we could write as breach = close > highest(close, 10)[1].
The same statement could also be written as breach = close > highest(close[1],
10).

The same looping logic on all bars is applied to function calls such as plot(open) which will
repeat on each bar, successively plotting on the chart the value of open for each bar.

Do not confuse “time series” with the “series” form. The time series concept explains how
consecutive values of variables are stored in Pine Script®; the “series” form denotes variables
whose values can change bar to bar. Consider, for example, the timeframe.period built-in variable
which is of form “simple” and type “string”, so “simple string”. The “simple” form entails that the
variable’s value is known on bar zero (the first bar where the script executes) and will not change
during the script’s execution on all the chart’s bars. The variable’s value is the chart’s timeframe in
string format, so "D" for a 1D chart, for example. Even though its value cannot change during the

script, it would be syntactically correct in Pine Script® (though not very useful) to refer to its value
10 bars ago using timeframe.period[10]. This is possible because the successive values of
timeframe.period for each bar are stored in a time series, even though all the values in that
particular time series are similar. Note, however, that when the [] operator is used to access past
values of a variable, it yields a result of “series” form, even though the variable without an offset is

https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Dperiod
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Dperiod
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel

of another form, such as “simple” in the case of timeframe.period.

When you grasp how time series can be efficiently handled using Pine Script®’s syntax and its
execution model, you can define complex calculations using little code.

Script structure
• Version
• Declaration statement
• Code
• Comments
• Line wrapping
• Compiler annotations

A Pine script follows this general structure:

<version>
<declaration_statement>
<code>

Version
A compiler annotation in the following form tells the compiler which of the versions of Pine Script®

the script is written in:

//@version=5

• The version number can be 1 to 5.
• The compiler annotation is not mandatory. When omitted, version 1 is assumed. It is

strongly recommended to always use the latest version of the language.
• While it is synctactically correct to place the version compiler annotation anywhere in the

script, it is much more useful to readers when it appears at the top of the script.

Notable changes to the current version of Pine Script® are documented in the Release notes.

Declaration statement
All Pine scripts must contain one declaration statement, which is a call to one of these functions:

• indicator()
• strategy()
• library()

The declaration statement:

• Identifies the type of the script, which in turn dictates which content is allowed in it, and
how it can be used and executed.

• Sets key properties of the script such as its name, where it will appear when it is added to a
chart, the precision and format of the values it displays, and certain values that govern its
runtime behavior, such as the maximum number of drawing objects it will display on the
chart. With strategies, the properties include parameters that control backtesting, such as
initial capital, commission, slippage, etc.

Each type of script has distinct requirements:

https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-docs/en/v5/language/Declaration_statements.html#pagedeclarationstatements
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/Release_notes.html#pagereleasenotes
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#pagescriptstructure-compilerannotations
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#compiler-annotations
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#line-wrapping
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#comments
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#code
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#declaration-statement
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#version
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Dperiod

• Indicators must contain at least one function call which produces output on the chart (e.g.,
plot(), plotshape(), barcolor(), line.new(), etc.).

• Strategies must contain at least one strategy.*() call, e.g., strategy.entry().
• Libraries must contain at least one exported function or user-defined type.

Code
Lines in a script that are not comments or compiler annotations are statements, which implement the
script’s algorithm. A statement can be one of these:

• variable declaration
• variable reassignement
• function declaration
• built-in function call, user-defined function call or a library function call
• if, for, while, switch or type structure.

Statements can be arranged in multiple ways:

• Some statements can be expressed in one line, like most variable declarations, lines
containing only a function call or single-line function declarations. Lines can also be
wrapped (continued on multiple lines). Multiple one-line statements can be concatenated on
a single line by using the comma as a separator.

• Others statements such as structures or multi-line function declarations always require
multiple lines because they require a local block. A local block must be indented by a tab or
four spaces. Each local block defines a distinct local scope.

• Statements in the global scope of the script (i.e., which are not part of local blocks) cannot
begin with white space (a space or a tab). Their first character must also be the line’s first
character. Lines beginning in a line’s first position become by definition part of the script’s
global scope.

A simple valid Pine Script® v5 indicator can be generated in the Pine Script® Editor by using the
“Open” button and choosing “New blank indicator”:

//@version=5
indicator("My Script")
plot(close)

This indicator includes three local blocks, one in the f() function declaration, and two in the
variable declaration using an if structure:

//@version=5

indicator("", "", true) // Declaration statement (global scope)

barIsUp() => // Function declaration (global scope)
 close > open // Local block (local scope)

plotColor = if barIsUp() // Variable declaration (global scope)
 color.green // Local block (local scope)
else
 color.red // Local block (local scope)

bgcolor(color.new(plotColor, 70)) // Call to a built-in function (global
scope)

You can bring up a simple Pine Script® v5 strategy by selecting “New blank strategy” instead:

//@version=5

https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#pagescriptstructure-linewrapping
https://www.tradingview.com/pine-script-reference/v5/#op_type
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#pagelibraries-usingalibrary
https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#pageuserdefinedfunctions
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#pagescriptstructure-compilerannotations
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#pagescriptstructure-comments
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#id3
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#pagelibraries-objects
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#pagelibraries-functions
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_barcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

strategy("My Strategy", overlay=true, margin_long=100, margin_short=100)

longCondition = ta.crossover(ta.sma(close, 14), ta.sma(close, 28))
if (longCondition)
 strategy.entry("My Long Entry Id", strategy.long)

shortCondition = ta.crossunder(ta.sma(close, 14), ta.sma(close, 28))
if (shortCondition)
 strategy.entry("My Short Entry Id", strategy.short)

Comments
Double slashes (//) define comments in Pine Script®. Comments can begin anywhere on the line.

They can also follow Pine Script® code on the same line:

//@version=5
indicator("")
// This line is a comment
a = close // This is also a comment
plot(a)

The Pine Script® Editor has a keyboard shortcut to comment/uncomment lines: ctrl + /. You can
use it on multiple lines by highlighting them first.

Line wrapping
Long lines can be split on multiple lines, or “wrapped”. Wrapped lines must be indented with any
number of spaces, provided it’s not a multiple of four (those boundaries are used to indent local
blocks):

a = open + high + low + close

may be wrapped as:

a = open +
 high +
 low +
 close

A long plot() call may be wrapped as:

plot(ta.correlation(src, ovr, length),
 color = color.new(color.purple, 40),
 style = plot.style_area,
 trackprice = true)

Statements inside user-defined function declarations can also be wrapped. However, since a local
block must syntactically begin with an indentation (4 spaces or 1 tab), when splitting it onto the
following line, the continuation of the statement must start with more than one indentation (not
equal to a multiple of four spaces). For example:

updown(s) =>
 isEqual = s == s[1]
 isGrowing = s > s[1]
 ud = isEqual ?
 0 :
 isGrowing ?
 (nz(ud[1]) <= 0 ?
 1 :

https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#id4

 nz(ud[1])+1) :
 (nz(ud[1]) >= 0 ?
 -1 :
 nz(ud[1])-1)

You can use comments in wrapped lines:

//@version=5
indicator("")
c = open > close ? color.red :
 high > high[1] ? color.lime : // A comment
 low < low[1] ? color.blue : color.black
bgcolor(c)

Compiler annotations
Compiler annotations are comments that issue special instructions for a script:

• //@version= specifies the PineScript™ version that the compiler will use. The number in
this annotation should not be confused with the script’s revision number, which updates on
every saved change to the code.

• //@description sets a custom description for scripts that use the library() declaration
statement.

• //@function, //@param and //@returns add custom descriptions for a user-defined
function, its parameters, and its result when placed above the function declaration.

• //@type and //@field add custom descriptions for a user-defined type (UDT) and its
fields when placed above the type declaration.

• //@variable adds a custom description for a variable when placed above its declaration.
• //@strategy_alert_message provides a default message for strategy scripts to pre-

fill the “Message” field in the alert creation dialogue.
• //#region and //#endregion create collapsible code regions in the Pine Editor.

Clicking the dropdown arrow next to //#region collapses the lines of code between the
two annotations.

This script draws a rectangle using three interactively selected points on the chart. It illustrates how
compiler annotations can be used:

//@version=5
indicator("Triangle", "", true)

int TIME_DEFAULT = 0
float PRICE_DEFAULT = 0.0

x1Input = input.time(TIME_DEFAULT, "Point 1", inline = "1", confirm = true)
y1Input = input.price(PRICE_DEFAULT, "", inline = "1", tooltip = "Pick
point 1", confirm = true)
x2Input = input.time(TIME_DEFAULT, "Point 2", inline = "2", confirm = true)
y2Input = input.price(PRICE_DEFAULT, "", inline = "2", tooltip = "Pick
point 2", confirm = true)
x3Input = input.time(TIME_DEFAULT, "Point 3", inline = "3", confirm = true)
y3Input = input.price(PRICE_DEFAULT, "", inline = "3", tooltip = "Pick
point 3", confirm = true)

// @type Used to represent the coordinates and color to draw a
triangle.

https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#pagescriptstructure-comments
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#id6

// @field time1 Time of first point.
// @field time2 Time of second point.
// @field time3 Time of third point.
// @field price1 Price of first point.
// @field price2 Price of second point.
// @field price3 Price of third point.
// @field lineColor Color to be used to draw the triangle lines.
type Triangle
 int time1
 int time2
 int time3
 float price1
 float price2
 float price3
 color lineColor

//@function Draws a triangle using the coordinates of the `t` object.
//@param t (Triangle) Object representing the triangle to be drawn.
//@returns The ID of the last line drawn.
drawTriangle(Triangle t) =>
 line.new(t.time1, t.price1, t.time2, t.price2, xloc = xloc.bar_time, color =
t.lineColor)
 line.new(t.time2, t.price2, t.time3, t.price3, xloc = xloc.bar_time, color =
t.lineColor)
 line.new(t.time1, t.price1, t.time3, t.price3, xloc = xloc.bar_time, color =
t.lineColor)

// Draw the triangle only once on the last historical bar.
if barstate.islastconfirmedhistory
 //@variable Used to hold the Triangle object to be drawn.
 Triangle triangle = Triangle.new()

 triangle.time1 := x1Input
 triangle.time2 := x2Input
 triangle.time3 := x3Input
 triangle.price1 := y1Input
 triangle.price2 := y2Input
 triangle.price3 := y3Input
 triangle.lineColor := color.purple

 drawTriangle(triangle)

Identifiers
Identifiers are names used for user-defined variables and functions:

• They must begin with an uppercase (A-Z) or lowercase (a-z) letter, or an underscore (_).
• The next characters can be letters, underscores or digits (0-9).
• They are case-sensitive.

Here are some examples:

myVar
_myVar
my123Var
functionName
MAX_LEN
max_len
maxLen
3barsDown // NOT VALID!

The Pine Script® Style Guide recommends using uppercase SNAKE_CASE for constants, and
camelCase for other identifiers:

GREEN_COLOR = #4CAF50
MAX_LOOKBACK = 100
int fastLength = 7
// Returns 1 if the argument is `true`, 0 if it is `false` or `na`.
zeroOne(boolValue) => boolValue ? 1 : 0

Operators
• Introduction
• Arithmetic operators
• Comparison operators
• Logical operators
• `?:` ternary operator
• `[]` history-referencing operator
• Operator precedence
• `=` assignement operator
• `:=` reassignement operator

Introduction
Some operators are used to build expressions returning a result:

• Arithmetic operators
• Comparison operators
• Logical operators
• The ?: ternary operator
• The [] history-referencing operator

Other operators are used to assign values to variables:

• = is used to assign a value to a variable, but only when you declare the variable (the first
time you use it)

• := is used to assign a value to a previously declared variable. The following operators can
also be used in such a way: +=, -=, *=, /=, %=

As is explained in the Type system page, forms and types play a critical role in determining the type
of results that expressions yield. This, in turn, has an impact on how and with what functions you
will be allowed to use those results. Expressions always return a form of the strongest one used in
the expression, e.g., if you multiply an “input int” with a “series int”, the expression will produce a
“series int” result, which you will not be able to use as the argument to length in ta.ema().

This script will produce a compilation error:

//@version=5
indicator("")
lenInput = input.int(14, "Length")
factor = year > 2020 ? 3 : 1
adjustedLength = lenInput * factor
ma = ta.ema(close, adjustedLength) // Compilation error!
plot(ma)

The compiler will complain: Cannot call ‘ta.ema’ with argument ‘length’=’adjustedLength’. An

https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dema
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-reference/v5/#op_%7Bquestion%7D%7Bcolon%7D
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#reassignement-operator
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#assignement-operator
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#operator-precedence
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#history-referencing-operator
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#ternary-operator
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#logical-operators
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#comparison-operators
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#arithmetic-operators
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#introduction
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#pagestyleguide

argument of ‘series int’ type was used but a ‘simple int’ is expected;. This is happening because
lenInput is an “input int” but factor is a “series int” (it can only be determined by looking at
the value of year on each bar). The adjustedLength variable is thus assigned a “series int”
value. Our problem is that the Reference Manual entry for ta.ema() tells us that its length
parameter requires values of “simple” form, which is a weaker form that “series”, so a “series int”
value is not allowed.

The solution to our conundrum requires:

• Using another moving average function that supports a “series int” length, such as ta.sma(),
or

• Not using a calculation producing a “series int” value for our length.

Arithmetic operators
There are five arithmetic operators in Pine Script®:

+ Addition and
string
concatenation

- Subtraction

* Multiplication

/ Division

% Modulo
(remainder
after division)

The arithmetic operators above are all binary (means they need two operands — or values — to
work on, like in 1 + 2). The + and - also serve as unary operators (means they work on one
operand, like -1 or +1).

If both operands are numbers but at least one of these is of float type, the result will also be a float.
If both operands are of int type, the result will also be an int. If at least one operand is na, the result
is also na.

The + operator also serves as the concatenation operator for strings. "EUR"+"USD" yields the
"EURUSD" string.

The % operator calculates the modulo by rounding down the quotient to the lowest possible value.
Here is an easy example that helps illustrate how the modulo is calculated behind the scenes:

//@version=5
indicator("Modulo function")
modulo(series int a, series int b) =>
 a - b * math.floor(nz(a/b))
plot(modulo(-1, 100))

Comparison operators
There are six comparison operators in Pine Script®:

< Less Than

<= Less Than or

https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#id3
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_int
https://www.tradingview.com/pine-script-reference/v5/#op_int
https://www.tradingview.com/pine-script-reference/v5/#op_float
https://www.tradingview.com/pine-script-reference/v5/#op_float
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#id2
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dsma
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dema
https://www.tradingview.com/pine-script-reference/v5/#var_year

Equal To

!= Not Equal

== Equal

> Greater Than

>= Greater Than
or Equal To

Comparison operations are binary. If both operands have a numerical value, the result will be of
type bool, i.e., true, false or na.

Examples

1 > 2 // false
1 != 1 // false
close >= open // Depends on values of `close` and `open`

Logical operators
There are three logical operators in Pine Script®:

not Negation

and Logical
Conjunction

or Logical
Disjunction

The operator not is unary. When applied to a true, operand the result will be false, and vice
versa.

and operator truth table:

a b
a and

b

true true true

true false false

false true false

false false false

or operator truth table:

a b a or b

true true true

true false true

false true true

false false false

`?:` ternary operator
The ?: ternary operator is used to create expressions of the form:

condition ? valueWhenConditionIsTrue : valueWhenConditionIsFalse

https://www.tradingview.com/pine-script-reference/v5/#op_%7Bquestion%7D%7Bcolon%7D
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#id4
https://www.tradingview.com/pine-script-reference/v5/#var_na

The ternary operator returns a result that depends on the value of condition. If it is true, then
valueWhenConditionIsTrue is returned. If condition is false or na, then
valueWhenConditionIsFalse is returned.

A combination of ternary expressions can be used to achieve the same effect as a switch structure,
e.g.:

timeframe.isintraday ? color.red : timeframe.isdaily ? color.green :
timeframe.ismonthly ? color.blue : na

The example is calculated from left to right:

• If timeframe.isintraday is true, then color.red is returned. If it is false, then
timeframe.isdaily is evaluated.

• If timeframe.isdaily is true, then color.green is returned. If it is false, then
timeframe.ismonthly is evaluated.

• If timeframe.ismonthly is true, then color.blue is returned, otherwise na is returned.

Note that the return values on each side of the : are expressions — not local blocks, so they will not
affect the limit of 500 local blocks per scope.

`[]` history-referencing operator
It is possible to refer to past values of time series using the [] history-referencing operator. Past
values are values a variable had on bars preceding the bar where the script is currently executing —
the current bar. See the Execution model page for more information about the way scripts are
executed on bars.

The [] operator is used after a variable, expression or function call. The value used inside the square
brackets of the operator is the offset in the past we want to refer to. To refer to the value of the
volume built-in variable two bars away from the current bar, one would use volume[2].

Because series grow dynamically, as the script moves on sucessive bars, the offset used with the
operator will refer to different bars. Let’s see how the value returned by the same offset is dynamic,
and why series are very different from arrays. In Pine Script®, the close variable, or close[0]
which is equivalent, holds the value of the current bar’s “close”. If your code is now executing on
the third bar of the dataset (the set of all bars on your chart), close will contain the price at the
close of that bar, close[1] will contain the price at the close of the preceding bar (the dataset’s
second bar), and close[2], the first bar. close[3] will return na because no bar exists in that
position, and thus its value is not available.

When the same code is executed on the next bar, the fourth in the dataset, close will now contain
the closing price of that bar, and the same close[1] used in your code will now refer to the
“close” of the third bar in the dataset. The close of the first bar in the dataset will now be
close[3], and this time close[4] will return na.

In the Pine Script® runtime environment, as your code is executed once for each historical bar in the
dataset, starting from the left of the chart, Pine Script® is adding a new element in the series at
index 0 and pushing the pre-existing elements in the series one index further away. Arrays, in
comparison, can have constant or variable sizes, and their content or indexing structure is not
modified by the runtime environment. Pine Script® series are thus very different from arrays and
only share familiarity with them through their indexing syntax.

When the market for the chart’s symbol is open and the script is executing on the chart’s last bar,
the realtime bar, close returns the value of the current price. It will only contain the actual closing

https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-docs/en/v5/language/Time_series.html#pagetimeseries
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#id6
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Dismonthly
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Dismonthly
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Disdaily
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Disdaily
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Disintraday
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#var_na

price of the realtime bar the last time the script is executed on that bar, when it closes.

Pine Script® has a variable that contains the number of the bar the script is executing on: bar_index.
On the first bar, bar_index is equal to 0 and it increases by 1 on each successive bar the script
executes on. On the last bar, bar_index is equal to the number of bars in the dataset minus one.

There is another important consideration to keep in mind when using the [] operator in Pine

Script®. We have seen cases when a history reference may return the na value. na represents a value
which is not a number and using it in any expression will produce a result that is also na (similar to
NaN). Such cases often happen during the script’s calculations in the early bars of the dataset, but
can also occur in later bars under certain conditions. If your code does not explicitly provide for
handling these special cases, they can introduce invalid results in your script’s calculations which
can ripple through all the way to the realtime bar. The na and nz functions are designed to allow for
handling such cases.

These are all valid uses of the [] operator:

high[10]
ta.sma(close, 10)[1]
ta.highest(high, 10)[20]
close > nz(close[1], open)

Note that the [] operator can only be used once on the same value. This is not allowed:

close[1][2] // Error: incorrect use of [] operator

Operator precedence
The order of calculations is determined by the operators’ precedence. Operators with greater
precedence are calculated first. Below is a list of operators sorted by decreasing precedence:

Precedence Operator

9 []

8 unary +,
unary -,
not

7 *, /, %

6 +, -

5 >, <, >=,
<=

4 ==, !=

3 and

2 or

1 ?:

If in one expression there are several operators with the same precedence, then they are calculated
left to right.

If the expression must be calculated in a different order than precedence would dictate, then parts of
the expression can be grouped together with parentheses.

https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#id7
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-reference/v5/#fun_nz
https://www.tradingview.com/pine-script-reference/v5/#fun_na
https://en.wikipedia.org/wiki/NaN
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index

`=` assignement operator
The = operator is used to assign a variable when it is initialized — or declared —, i.e., the first time
you use it. It says this is a new variable that I will be using, and I want it to start on each bar with
this value.

These are all valid variable declarations:

i = 1
MS_IN_ONE_MINUTE = 1000 * 60
showPlotInput = input.bool(true, "Show plots")
pHi = pivothigh(5, 5)
plotColor = color.green

See the Variable declarations page for more information on how to declare variables.

`:=` reassignement operator
The := is used to reassign a value to an existing variable. It says use this variable that was
declared earlier in my script, and give it a new value.

Variables which have been first declared, then reassigned using :=, are called mutable variables.
All the following examples are valid variable reassignments. You will find more information on
how var works in the section on the `var` declaration mode:

//@version=5
indicator("", "", true)
// Declare `pHi` and initilize it on the first bar only.
var float pHi = na
// Reassign a value to `pHi`
pHi := nz(ta.pivothigh(5, 5), pHi)
plot(pHi)

Note that:

• We declare pHi with this code: var float pHi = na. The var keyword tells Pine

Script® that we only want that variable initialized with na on the dataset’s first bar. The
float keyword tells the compiler we are declaring a variable of type “float”. This is
necessary because, contrary to most cases, the compiler cannot automatically determine the
type of the value on the right side of the = sign.

• While the variable declaration will only be executed on the first bar because it uses var, the
pHi := nz(ta.pivothigh(5, 5), pHi) line will be executed on all the chart’s
bars. On each bar, it evaluates if the pivothigh() call returns na because that is what the
function does when it hasn’t found a new pivot. The nz() function is the one doing the
“checking for na” part. When its first argument (ta.pivothigh(5, 5)) is na, it returns
the second argument (pHi) instead of the first. When pivothigh() returns the price point of a
newly found pivot, that value is assigned to pHi. When it returns na because no new pivot
was found, we assign the previous value of pHi to itself, in effect preserving its previous
value.

The output of our script looks like this:

https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dpivothigh
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_nz
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dpivothigh
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#pagevariabledeclarations-var
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#id9
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#pagevariabledeclarations
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#id8

Note that:

• The line preserves its previous value until a new pivot is found.
• Pivots are detected five bars after the pivot actually occurs because our
ta.pivothigh(5, 5) call says that we require five lower highs on both sides of a high
point for it to be detected as a pivot.

See the Variable reassignment section for more information on how to reassign values to variables.

Variable declarations
• Introduction

• Initialization with `na`
• Tuple declarations

• Variable reassignment
• Declaration modes

• On each bar
• `var`
• `varip`

Introduction
Variables are identifiers that hold values. They must be declared in your code before you use them.
The syntax of variable declarations is:

https://www.tradingview.com/pine-script-docs/en/v5/language/Identifiers.html#pageidentifiers
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#varip
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#var
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#on-each-bar
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#declaration-modes
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#variable-reassignment
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#tuple-declarations
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#initialization-with-na
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#introduction
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#pagevariabledeclarations-variablereassignment

[<declaration_mode>] [<type>] <identifier> = <expression> | <structure>

or

<tuple_declaration> = <function_call> | <structure>

where:

• | means “or”, and parts enclosed in square brackets ([]) can appear zero or one time.
• <declaration_mode> is the variable’s declaration mode. It can be var or varip, or nothing.
• <type> is optional, as in almost all Pine Script® variable declarations (see types).
• <identifier> is the variable’s name.
• <expression> can be a literal, a variable, an expression or a function call.
• <structure> can be an if, for, while or switch structure.
• <tuple_declaration> is a comma-separated list of variable names enclosed in square brackets

([]), e.g., [ma, upperBand, lowerBand].

These are all valid variable declarations. The last one requires four lines:

BULL_COLOR = color.lime
i = 1
len = input(20, "Length")
float f = 10.5
closeRoundedToTick = math.round_to_mintick(close)
st = ta.supertrend(4, 14)
var barRange = float(na)
var firstBarOpen = open
varip float lastClose = na
[macdLine, signalLine, histLine] = ta.macd(close, 12, 26, 9)
plotColor = if close > open
 color.green
else
 color.red

Note

The above statements all contain the = assignment operator because they are variable declarations.
When you see similar lines using the := reassignment operator, the code is reassigning a value to a
variable that was already declared. Those are variable reassignments. Be sure you understand the
distinction as this is a common stumbling block for newcomers to Pine Script®. See the next
Variable reassignment section for details.

The formal syntax of a variable declaration is:

<variable_declaration>
 [<declaration_mode>] [<type>] <identifier> = <expression> | <structure>
 |
 <tuple_declaration> = <function_call> | <structure>

<declaration_mode>
 var | varip

<type>
 int | float | bool | color | string | line | linefill | label | box | table
| array<type> | matrix<type> | UDF

Initialization with `na`

In most cases, an explicit type declaration is redundant because type is automatically inferred from

https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#pagevariabledeclarations-variablereassignment
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#pageoperators-reassignmentoperator
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-docs/en/v5/language/Identifiers.html#pageidentifiers
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-types
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#pagevariabledeclarations-declarationmodes

the value on the right of the = at compile time, so the decision to use them is often a matter of
preference. For example:

baseLine0 = na // compile time error!
float baseLine1 = na // OK
baseLine2 = float(na) // OK

In the first line of the example, the compiler cannot determine the type of the baseLine0 variable
because na is a generic value of no particular type. The declaration of the baseLine1 variable is
correct because its float type is declared explicitly. The declaration of the baseLine2 variable is
also correct because its type can be derived from the expression float(na), which is an explicit
cast of the na value to the float type. The declarations of baseLine1 and baseLine2 are
equivalent.

Tuple declarations

Function calls or structures are allowed to return multiple values. When we call them and want to
store the values they return, a tuple declaration must be used, which is a comma-separated set of
one or more values enclosed in brackets. This allows us to declare multiple variables
simultaneously. As an example, the ta.bb() built-in function for Bollinger bands returns three values:

[bbMiddle, bbUpper, bbLower] = ta.bb(close, 5, 4)

Variable reassignment
A variable reassignment is done using the := reassignment operator. It can only be done after a
variable has been first declared and given an initial value. Reassigning a new value to a variable is
often necessary in calculations, and it is always necessary when a variable from the global scope
must be assigned a new value from within a structure’s local block, e.g.:

//@version=5
indicator("", "", true)
sensitivityInput = input.int(2, "Sensitivity", minval = 1, tooltip = "Higher
values make color changes less sensitive.")
ma = ta.sma(close, 20)
maUp = ta.rising(ma, sensitivityInput)
maDn = ta.falling(ma, sensitivityInput)

// On first bar only, initialize color to gray
var maColor = color.gray
if maUp
 // MA has risen for two bars in a row; make it lime.
 maColor := color.lime
else if maDn
 // MA has fallen for two bars in a row; make it fuchsia.
 maColor := color.fuchsia

plot(ma, "MA", maColor, 2)

Note that:

• We initialize maColor on the first bar only, so it preserves its value across bars.
• On every bar, the if statement checks if the MA has been rising or falling for the user-

specified number of bars (the default is 2). When that happens, the value of maColor must
be reassigned a new value from within the if local blocks. To do this, we use the :=
reassignment operator.

• If we did not use the := reassignment operator, the effect would be to initialize a new

https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#pageoperators-reassignmentoperator
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#pageoperators-reassignmentoperator
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#pageoperators-reassignmentoperator
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#id4
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dbb
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#id3
https://www.tradingview.com/pine-script-reference/v5/#op_float
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_float
https://www.tradingview.com/pine-script-reference/v5/#var_na

maColor local variable which would have the same name as that of the global scope, but
actually be a very confusing independent entity that would persist only for the length of the
local block, and then disappear without a trace.

All user-defined variables in Pine Script® are mutable, which means their value can be changed
using the := reassignment operator. Assigning a new value to a variable may change its form (see
the page on Pine Script®’s type system for more information). A variable can be assigned a new
value as many times as needed during the script’s execution on one bar, so a script can contain any
number of reassignments of one variable. A variable’s declaration mode determines how new values
assigned to a variable will be saved.

Declaration modes
Understanding the impact that declaration modes have on the behavior of variables requires prior
knowledge of Pine Script®’s execution model.

When you declare a variable, if a declaration mode is specified, it must come first. Three modes can
be used:

• “On each bar”, when none is specified
• var
• varip

On each bar

When no explicit declaration mode is specified, i.e. no var or varip keyword is used, the variable is
declared and initialized on each bar, e.g., the following declarations from our first set of examples
in this page’s introduction:

BULL_COLOR = color.lime
i = 1
len = input(20, "Length")
float f = 10.5
closeRoundedToTick = math.round_to_mintick(close)
st = ta.supertrend(4, 14)
[macdLine, signalLine, histLine] = ta.macd(close, 12, 26, 9)
plotColor = if close > open
 color.green
else
 color.red

`var`

When the var keyword is used, the variable is only initialized once, on the first bar if the declaration
is in the global scope, or the first time the local block is executed if the declaration is inside a local
block. After that, it will preserve its last value on successive bars, until we reassign a new value to
it. This behavior is very useful in many cases where a variable’s value must persist through the
iterations of a script across successive bars. For example, suppose we’d like to count the number of
green bars on the chart:

//@version=5
indicator("Green Bars Count")
var count = 0
isGreen = close >= open
if isGreen
 count := count + 1
plot(count)

https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#id7
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#id6
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#pagevariabledeclarations-declarationmodes
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#pageoperators-reassignmentoperator

Without the var modifier, variable count would be reset to zero (thus losing its value) every time
a new bar update triggered a script recalculation.

Declaring variables on the first bar only is often useful to manage drawings more efficiently.
Suppoose we want to extend the last bar’s close line to the right of the right chart. We could write:

//@version=5
indicator("Inefficient version", "", true)
closeLine = line.new(bar_index - 1, close, bar_index, close, extend =
extend.right, width = 3)
line.delete(closeLine[1])

but this is inefficient because we are creating and deleting the line on each historical bar and on
each update in the realtime bar. It is more efficient to use:

//@version=5
indicator("Efficient version", "", true)
var closeLine = line.new(bar_index - 1, close, bar_index, close, extend =
extend.right, width = 3)
if barstate.islast
 line.set_xy1(closeLine, bar_index - 1, close)
 line.set_xy2(closeLine, bar_index, close)

Note that:

• We initialize closeLine on the first bar only, using the var declaration mode
• We restrict the execution of the rest of our code to the chart’s last bar by enclosing our code

that updates the line in an if barstate.islast structure.

There is a very slight penalty performance for using the var declaration mode. For that reason, when
declaring constants, it is preferable not to use var if performance is a concern, unless the
initialization involves calculations that take longer than the maintenance penalty, e.g., functions
with complex code or string manipulations.

`varip`

Understanding the behavior of variables using the varip declaration mode requires prior knowledge
of Pine Script®’s execution model and bar states.

The varip keyword can be used to declare variables that escape the rollback process, which is
explained in the page on Pine Script®’s execution model.

Whereas scripts only execute once at the close of historical bars, when a script is running in
realtime, it executes every time the chart’s feed detects a price or volume update. At every realtime
update, Pine Script®’s runtime normally resets the values of a script’s variables to their last
committed value, i.e., the value they held when the previous bar closed. This is generally handy, as
each realtime script execution starts from a known state, which simplifies script logic.

Sometimes, however, script logic requires code to be able to save variable values between different
executions in the realtime bar. Declaring variables with varip makes that possible. The “ip” in varip
stands for intrabar persist.

Let’s look at the following code, which does not use varip:

//@version=5
indicator("")
int updateNo = na

https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#pagebarstates
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#id8
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Dislast
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#var_close

if barstate.isnew
 updateNo := 1
else
 updateNo := updateNo + 1

plot(updateNo, style = plot.style_circles)

On historical bars, barstate.isnew is always true, so the plot shows a value of “1” because the else
part of the if structure is never executed. On realtime bars, barstate.isnew is only true when the
script first executes on the bar’s “open”. The plot will then briefly display “1” until subsequent
executions occur. On the next executions during the realtime bar, the second branch of the if
statement is executed because barstate.isnew is no longer true. Since updateNo is initialized to na
at each execution, the updateNo + 1 expression yields na, so nothing is plotted on further
realtime executions of the script.

If we now use varip to declare the updateNo variable, the script behaves very differently:

//@version=5
indicator("")
varip int updateNo = na
if barstate.isnew
 updateNo := 1
else
 updateNo := updateNo + 1

plot(updateNo, style = plot.style_circles)

The difference now is that updateNo tracks the number of realtime updates that occur on each
realtime bar. This can happen because the varip declaration allows the value of updateNo to be
preserved between realtime updates; it is no longer rolled back at each realtime execution of the
script. The test on barstate.isnew allows us to reset the update count when a new realtime bar comes
in.

Because varip only affects the behavior of your code in the realtime bar, it follows that backtest
results on strategies designed using logic based on varip variables will not be able to reproduce that
behavior on historical bars, which will invalidate test results on them. This also entails that plots on
historical bars will not be able to reproduce the script’s behavior in realtime.

Conditional structures
• Introduction
• `if` structure

• `if` used for its side effects
• `if` used to return a value

• `switch` structure
• `switch` with an expression
• `switch` without an expression

• Matching local block type requirement

Introduction
The conditional structures in Pine Script® are if and switch. They can be used:

https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#matching-local-block-type-requirement
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#switch-without-an-expression
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#switch-with-an-expression
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#switch-structure
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#if-used-to-return-a-value
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#if-used-for-its-side-effects
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#if-structure
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#introduction
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disnew
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disnew
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_true
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disnew
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disnew

• For their side effects, i.e., when they don’t return a value but do things, like reassign values
to variables or call functions.

• To return a value or a tuple which can then be assigned to one (or more, in the case of
tuples) variable.

Conditional structures, like the for and while structures, can be embedded; you can use an if or
switch inside another structure.

Some Pine Script® built-in functions cannot be called from within the local blocks of conditional
structures. They are: alertcondition(), barcolor(), fill(), hline(), indicator(), library(), plot(),
plotbar(), plotcandle(), plotchar(), plotshape(), strategy(). This does not entail their functionality
cannot be controlled by conditions evaluated by your script — only that it cannot be done by
including them in conditional structures. Note that while input*.() function calls are allowed in
local blocks, their functionality is the same as if they were in the script’s global scope.

The local blocks in conditional structures must be indented by four spaces or a tab.

`if` structure

`if` used for its side effects

An if structure used for its side effects has the following syntax:

if <expression>
 <local_block>
{else if <expression>
 <local_block>}
[else
 <local_block>]

where:

• Parts enclosed in square brackets ([]) can appear zero or one time, and those enclosed in
curly braces ({}) can appear zero or more times.

• <expression> must be of “bool” type or be auto-castable to that type, which is only possible
for “int” or “float” values (see the Type system page).

• <local_block> consists of zero or more statements followed by a return value, which can be
a tuple of values. It must be indented by four spaces or a tab.

• There can be zero or more else if clauses.
• There can be zero or one else clause.

When the <expression> following the if evaluates to true, the first local block is executed, the if
structure’s execution ends, and the value(s) evaluated at the end of the local block are returned.

When the <expression> following the if evaluates to false, the successive else if clauses are
evaluated, if there are any. When the <expression> of one evaluates to true, its local block is
executed, the if structure’s execution ends, and the value(s) evaluated at the end of the local block
are returned.

When no <expression> has evaluated to true and an else clause exists, its local block is executed,
the if structure’s execution ends, and the value(s) evaluated at the end of the local block are
returned.

When no <expression> has evaluated to true and no else clause exists, na is returned.

Using if structures for their side effects can be useful to manage the order flow in strategies, for
example. While the same functionality can often be achieved using the when parameter in

https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_true
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_true
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_true
https://www.tradingview.com/pine-script-reference/v5/#op_false
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_true
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-types
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#id3
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#id2
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-reference/v5/#fun_plotbar
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_barcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#op_for

strategy.*() calls, code using if structures is easier to read:

if (ta.crossover(source, lower))
 strategy.entry("BBandLE", strategy.long, stop=lower,
 oca_name="BollingerBands",
 oca_type=strategy.oca.cancel, comment="BBandLE")
else
 strategy.cancel(id="BBandLE")

Restricting the execution of your code to specific bars ican be done using if structures, as we do
here to restrict updates to our label to the chart’s last bar:

//@version=5
indicator("", "", true)
var ourLabel = label.new(bar_index, na, na, color = color(na), textcolor =
color.orange)
if barstate.islast
 label.set_xy(ourLabel, bar_index + 2, hl2[1])
 label.set_text(ourLabel, str.tostring(bar_index + 1, "# bars in chart"))

Note that:

• We initialize the ourLabel variable on the script’s first bar only, as we use the var
declaration mode. The value used to initialize the variable is provided by the label.new()
function call, which returns a label ID pointing to the label it creates. We use that call to set
the label’s properties because once set, they will persist until we change them.

• What happens next is that on each successive bar the Pine Script® runtime will skip the
initialization of ourLabel, and the if structure’s condition (barstate.islast) is evaluated. It
returns false on all bars until the last one, so the script does nothing on most historical
bars after bar zero.

• On the last bar, barstate.islast becomes true and the structure’s local block executes,
modifying on each chart update the properties of our label, which displays the number of
bars in the dataset.

• We want to display the label’s text without a background, so we make the label’s
background na in the label.new() function call, and we use hl2[1] for the label’s y position
because we don’t want it to move all the time. By using the average of the previous bar’s
high and low values, the label doesn’t move until the moment when the next realtime bar
opens.

• We use bar_index + 2 in our label.set_xy() call to offset the label to the right by two
bars.

`if` used to return a value

An if structure used to return one or more values has the following syntax:

[<declaration_mode>] [<type>] <identifier> = if <expression>
 <local_block>
{else if <expression>
 <local_block>}
[else
 <local_block>]

where:

• Parts enclosed in square brackets ([]) can appear zero or one time, and those enclosed in
curly braces ({}) can appear zero or more times.

• <declaration_mode> is the variable’s declaration mode

https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#pagevariabledeclarations-declarationmodes
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#id4
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_xy
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Dislast
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Dislast
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if

• <type> is optional, as in almost all Pine Script® variable declarations (see types)
• <identifier> is the variable’s name
• <expression> can be a literal, a variable, an expression or a function call.
• <local_block> consists of zero or more statements followed by a return value, which can be

a tuple of values. It must be indented by four spaces or a tab.
• The value assigned to the variable is the return value of the <local_block>, or na if no local

block is executed.

This is an example:

//@version=5
indicator("", "", true)
string barState = if barstate.islastconfirmedhistory
 "islastconfirmedhistory"
else if barstate.isnew
 "isnew"
else if barstate.isrealtime
 "isrealtime"
else
 "other"

f_print(_text) =>
 var table _t = table.new(position.middle_right, 1, 1)
 table.cell(_t, 0, 0, _text, bgcolor = color.yellow)
f_print(barState)

It is possible to omit the else block. In this case, if the condition is false, an empty value (na,
false, or "") will be assigned to the var_declarationX variable.

This is an example showing how na is returned when no local block is executed. If close >
open is false in here, na is returned:

x = if close > open
 close

`switch` structure
The switch structure exists in two forms. One switches on the different values of a key expression:

[[<declaration_mode>] [<type>] <identifier> =]switch <expression>
 {<expression> => <local_block>}
 => <local_block>

The other form does not use an expression as a key; it switches on the evaluation of different
expressions:

[[<declaration_mode>] [<type>] <identifier> =]switch
 {<expression> => <local_block>}
 => <local_block>

where:

• Parts enclosed in square brackets ([]) can appear zero or one time, and those enclosed in
curly braces ({}) can appear zero or more times.

• <declaration_mode> is the variable’s declaration mode
• <type> is optional, as in almost all Pine Script® variable declarations (see types)
• <identifier> is the variable’s name
• <expression> can be a literal, a variable, an expression or a function call.

https://www.tradingview.com/pine-script-docs/en/v5/language/Identifiers.html#pageidentifiers
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-types
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#pagevariabledeclarations-declarationmodes
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#id5
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-docs/en/v5/language/Identifiers.html#pageidentifiers
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-types

• <local_block> consists of zero or more statements followed by a return value, which can be
a tuple of values. It must be indented by four spaces or a tab.

• The value assigned to the variable is the return value of the <local_block>, or na if no local
block is executed.

• The => <local_block> at the end allows you to specify a return value which acts as a
default to be used when no other case in the structure is executed.

Only one local block of a switch structure is executed. It is thus a structured switch that doesn’t fall
through cases. Consequently, break statements are unnecessary.

Both forms are allowed as the value used to initialize a variable.

As with the if structure, if no local block is exectuted, na is returned.

`switch` with an expression

Let’s look at an example of a switch using an expression:

//@version=5
indicator("Switch using an expression", "", true)

string maType = input.string("EMA", "MA type", options = ["EMA", "SMA", "RMA",
"WMA"])
int maLength = input.int(10, "MA length", minval = 2)

float ma = switch maType
 "EMA" => ta.ema(close, maLength)
 "SMA" => ta.sma(close, maLength)
 "RMA" => ta.rma(close, maLength)
 "WMA" => ta.wma(close, maLength)
 =>
 runtime.error("No matching MA type found.")
 float(na)

plot(ma)

Note that:

• The expression we are switching on is the variable maType, which is of “input int” type
(see here for an explanation of what the “input” form is). Since it cannot change during the
execution of the script, this guarantees that whichever MA type the user selects will be
executing on each bar, which is a requirement for functions like ta.ema() which require a
“simple int” argument for their length parameter.

• If no matching value is found for maType, the switch executes the last local block
introduced by =>, which acts as a catch-all. We generate a runtime error in that block. We
also end it with float(na) so the local block returns a value whose type is compatible
with that of the other local blocks in the structure, to avoid a compilation error.

`switch` without an expression

This is an example of a switch structure wich does not use an exppression:

//@version=5
strategy("Switch without an expression", "", true)

bool longCondition = ta.crossover(ta.sma(close, 14), ta.sma(close, 28))
bool shortCondition = ta.crossunder(ta.sma(close, 14), ta.sma(close, 28))

switch

https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#id7
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dema
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-input
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#id6
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#var_na

 longCondition => strategy.entry("Long ID", strategy.long)
 shortCondition => strategy.entry("Short ID", strategy.short)

Note that:

• We are using the switch to select the appropriate strategy order to emit, depending on
whether the longCondition or shortCondition “bool” variables are true.

• The building conditions of longCondition and shortCondition are exclusive.
While they can both be false simultaneously, they cannot be true at the same time. The
fact that only one local block of the switch structure is ever executed is thus not an issue for
us.

• We evaluate the calls to ta.crossover() and ta.crossunder() prior to entry in the switch
structure. Not doing so, as in the following example, would prevent the functions to be
executed on each bar, which would result in a compiler warning and erratic behavior:

//@version=5
strategy("Switch without an expression", "", true)

switch
 // Compiler warning! Will not calculate correctly!
 ta.crossover(ta.sma(close, 14), ta.sma(close, 28)) =>
strategy.entry("Long ID", strategy.long)
 ta.crossunder(ta.sma(close, 14), ta.sma(close, 28)) =>
strategy.entry("Short ID", strategy.short)

Matching local block type requirement
When multiple local blocks are used in structures, the type of the return value of all its local blocks
must match. This applies only if the structure is used to assign a value to a variable in a declaration,
because a variable can only have one type, and if the statement returns two incompatible types in its
branches, the variable type cannot be properly determined. If the structure is not assigned anywhere,
its branches can return different values.

This code compiles fine because close and open are both of the float type:

x = if close > open
 close
else
 open

This code does not compile because the first local block returns a float value, while the second
one returns a string`, and the result of the if-statement is assigned to the x variable:

// Compilation error!
x = if close > open
 close
else
 "open"

Loops
• Introduction

• When loops are not needed
• When loops are necessary

• `for`

https://www.tradingview.com/pine-script-docs/en/v5/language/Loops.html#for
https://www.tradingview.com/pine-script-docs/en/v5/language/Loops.html#when-loops-are-necessary
https://www.tradingview.com/pine-script-docs/en/v5/language/Loops.html#when-loops-are-not-needed
https://www.tradingview.com/pine-script-docs/en/v5/language/Loops.html#introduction
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#id8
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dcrossunder
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dcrossover
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#op_switch

• `while`

Introduction

When loops are not needed

Pine Script®’s runtime and its built-in functions make loops unnecessary in many situations.
Budding Pine Script® programmers not yet familiar with the Pine Script® runtime and built-ins who
want to calculate the average of the last 10 close values will often write code such as:

//@version=5
indicator("Inefficient MA", "", true)
MA_LENGTH = 10
sumOfCloses = 0.0
for offset = 0 to MA_LENGTH - 1
 sumOfCloses := sumOfCloses + close[offset]
inefficientMA = sumOfCloses / MA_LENGTH
plot(inefficientMA)

A for loop is unnecessary and inefficient to accomplish tasks like this in Pine. This is how it should
be done. This code is shorter and will run much faster because it does not use a loop and uses the
ta.sma() built-in function to accomplish the task:

//@version=5
indicator("Efficient MA", "", true)
thePineMA = ta.sma(close, 10)
plot(thePineMA)

Counting the occurrences of a condition in the last bars is also a task which beginning Pine Script®
programmers often think must be done with a loop. To count the number of up bars in the last 10
bars, they will use:

//@version=5
indicator("Inefficient sum")
MA_LENGTH = 10
upBars = 0.0
for offset = 0 to MA_LENGTH - 1
 if close[offset] > open[offset]
 upBars := upBars + 1
plot(upBars)

The efficient way to write this in Pine (for the programmer because it saves time, to achieve the
fastest-loading charts, and to share our common resources most equitably), is to use the math.sum()
built-in function to accomplish the task:

//@version=5
indicator("Efficient sum")
upBars = math.sum(close > open ? 1 : 0, 10)
plot(upBars)

What’s happening in there is:

• We use the ?: ternary operator to build an expression that yields 1 on up bars and 0 on other
bars.

• We use the math.sum() built-in function to keep a running sum of that value for the last 10
bars.

https://www.tradingview.com/pine-script-reference/v5/#fun_math%7Bdot%7Dsum
https://www.tradingview.com/pine-script-reference/v5/#op_%7Bquestion%7D%7Bcolon%7D
https://www.tradingview.com/pine-script-reference/v5/#fun_math%7Bdot%7Dsum
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dsma
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-docs/en/v5/language/Loops.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/language/Loops.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/language/Loops.html#while

When loops are necessary

Loops exist for good reason because even in Pine Script®, they are necessary in some cases. These
cases typically include:

• The manipulation of collections (arrays, matrices, and maps).
• Looking back in history to analyze bars using a reference value that can only be known on

the current bar, e.g., to find how many past highs are higher than the high of the current bar.
Since the current bar’s high is only known on the bar the script is running on, a loop is
necessary to go back in time and analyze past bars.

• Performing calculations on past bars that cannot be accomplished using built-in functions.

`for`
The for structure allows the repetitive execution of statements using a counter. Its syntax is:

[[<declaration_mode>] [<type>] <identifier> =]for <identifier> = <expression>
to <expression>[by <expression>]
 <local_block_loop>

where:

• Parts enclosed in square brackets ([]) can appear zero or one time, and those enclosed in
curly braces ({}) can appear zero or more times.

• <declaration_mode> is the variable’s declaration mode
• <type> is optional, as in almost all Pine Script® variable declarations (see types)
• <identifier> is a variable’s name
• <expression> can be a literal, a variable, an expression or a function call.
• <local_block_loop> consists of zero or more statements followed by a return value, which

can be a tuple of values. It must be indented by four spaces or a tab. It can contain the
break statement to exit the loop, or the continue statement to exit the current iteration
and continue on with the next.

• The value assigned to the variable is the return value of the <local_block_loop>, i.e., the last
value calculated on the loop’s last iteration, or na if the loop is not executed.

• The identifier in for <identifier> is the loop’s counter initial value.
• The expression in = <expression> is the start value of the counter.
• The expression in to <expression> is the end value of the counter. It is only evaluated

upon entry in the loop.
• The expression in by <expression> is optional. It is the step by which the loop counter

is increased or decreased on each iteration of the loop. Its default value is 1 when start
value < end value. It is -1 when start value > end value. The step (+1 or
-1) used as the default is determined by the start and end values.

This example uses a for statement to look back a user-defined amount of bars to determine how
many bars have a high that is higher or lower than the high of the last bar on the chart. A for loop is
necessary here, since the script only has access to the reference value on the chart’s last bar. Pine
Script®’s runtime cannot, here, be used to calculate on the fly, as the script is executing bar to bar:

//@version=5
indicator("`for` loop")
lookbackInput = input.int(50, "Lookback in bars", minval = 1, maxval = 4999)
higherBars = 0
lowerBars = 0
if barstate.islast
 var label lbl = label.new(na, na, "", style = label.style_label_left)

https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-docs/en/v5/language/Identifiers.html#pageidentifiers
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-types
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#pagevariabledeclarations-declarationmodes
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-docs/en/v5/language/Loops.html#id4
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays
https://www.tradingview.com/pine-script-docs/en/v5/language/Loops.html#id3

 for i = 1 to lookbackInput
 if high[i] > high
 higherBars += 1
 else if high[i] < high
 lowerBars += 1
 label.set_xy(lbl, bar_index, high)
 label.set_text(lbl, str.tostring(higherBars, "# higher bars\n") +
str.tostring(lowerBars, "# lower bars"))

This example uses a loop in its checkLinesForBreaches() function to go through an array
of pivot lines and delete them when price crosses them. A loop is necessary here because all the
lines in each of the hiPivotLines and loPivotLines arrays must be checked on each bar,
and there is no built-in that can do this for us:

//@version=5
MAX_LINES_COUNT = 100
indicator("Pivot line breaches", "", true, max_lines_count = MAX_LINES_COUNT)

color hiPivotColorInput = input(color.new(color.lime, 0), "High pivots")
color loPivotColorInput = input(color.new(color.fuchsia, 0), "Low pivots")
int pivotLegsInput = input.int(5, "Pivot legs")
int qtyOfPivotsInput = input.int(50, "Quantity of last pivots to remember",
minval = 0, maxval = MAX_LINES_COUNT / 2)
int maxLineLengthInput = input.int(400, "Maximum line length in bars", minval
= 2)

// ————— Queues a new element in an array and de-queues its first element.
qDq(array, qtyOfElements, arrayElement) =>
 array.push(array, arrayElement)
 if array.size(array) > qtyOfElements
 // Only deqeue if array has reached capacity.
 array.shift(array)

// —————— Loop through an array of lines, extending those that price has not
crossed and deleting those crossed.
checkLinesForBreaches(arrayOfLines) =>
 int qtyOfLines = array.size(arrayOfLines)
 // Don't loop in case there are no lines to check because "to" value will be
`na` then`.
 for lineNo = 0 to (qtyOfLines > 0 ? qtyOfLines - 1 : na)
 // Need to check that array size still warrants a loop because we may
have deleted array elements in the loop.
 if lineNo < array.size(arrayOfLines)
 line currentLine = array.get(arrayOfLines, lineNo)
 float lineLevel = line.get_price(currentLine, bar_index)
 bool lineWasCrossed = math.sign(close[1] - lineLevel) !=
math.sign(close - lineLevel)
 bool lineIsTooLong = bar_index - line.get_x1(currentLine) >
maxLineLengthInput
 if lineWasCrossed or lineIsTooLong
 // Line stays on the chart but will no longer be extend on
further bars.
 array.remove(arrayOfLines, lineNo)
 // Force type of both local blocks to same type.
 int(na)
 else
 line.set_x2(currentLine, bar_index)
 int(na)

// Arrays of lines containing non-crossed pivot lines.
var line[] hiPivotLines = array.new_line(qtyOfPivotsInput)
var line[] loPivotLines = array.new_line(qtyOfPivotsInput)

// Detect new pivots.
float hiPivot = ta.pivothigh(pivotLegsInput, pivotLegsInput)
float loPivot = ta.pivotlow(pivotLegsInput, pivotLegsInput)

// Create new lines on new pivots.
if not na(hiPivot)
 line newLine = line.new(bar_index[pivotLegsInput], hiPivot, bar_index,
hiPivot, color = hiPivotColorInput)
 line.delete(qDq(hiPivotLines, qtyOfPivotsInput, newLine))
else if not na(loPivot)
 line newLine = line.new(bar_index[pivotLegsInput], loPivot, bar_index,
loPivot, color = loPivotColorInput)
 line.delete(qDq(loPivotLines, qtyOfPivotsInput, newLine))

// Extend lines if they haven't been crossed by price.
checkLinesForBreaches(hiPivotLines)
checkLinesForBreaches(loPivotLines)

`while`
The while structure allows the repetitive execution of statements until a condition is false. Its syntax
is:

[[<declaration_mode>] [<type>] <identifier> =]while <expression>
 <local_block_loop>

where:

• Parts enclosed in square brackets ([]) can appear zero or one time.
• <declaration_mode> is the variable’s declaration mode
• <type> is optional, as in almost all Pine Script® variable declarations (see types)
• <identifier> is a variable’s name
• <expression> can be a literal, a variable, an expression or a function call. It is evaluated at

each iteration of the loop. When it evaluates to true, the loop executes. When it evaluates
to false the loop stops. Note that evaluation of the expression is done before each iteration
only. Changes to the expression’s value inside the loop will only have an impact on the next
iteration.

• <local_block_loop> consists of zero or more statements followed by a return value, which
can be a tuple of values. It must be indented by four spaces or a tab. It can contain the
break statement to exit the loop, or the continue statement to exit the current iteration
and continue on with the next.

• The value assigned to the <identifier> variable is the return value of the
<local_block_loop>, i.e., the last value calculated on the loop’s last iteration, or na if the
loop is not executed.

This is the first code example of the for section written using a while structure instead of a for one:

//@version=5
indicator("`for` loop")
lookbackInput = input.int(50, "Lookback in bars", minval = 1, maxval = 4999)
higherBars = 0
lowerBars = 0
if barstate.islast
 var label lbl = label.new(na, na, "", style = label.style_label_left)
 // Initialize the loop counter to its start value.
 i = 1
 // Loop until the `i` counter's value is <= the `lookbackInput` value.
 while i <= lookbackInput

https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-docs/en/v5/language/Loops.html#pageloops-for
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-docs/en/v5/language/Identifiers.html#pageidentifiers
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-types
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#pagevariabledeclarations-declarationmodes
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-docs/en/v5/language/Loops.html#id5

 if high[i] > high
 higherBars += 1
 else if high[i] < high
 lowerBars += 1
 // Counter must be managed "manually".
 i += 1
 label.set_xy(lbl, bar_index, high)
 label.set_text(lbl, str.tostring(higherBars, "# higher bars\n") +
str.tostring(lowerBars, "# lower bars"))

Note that:

• The i counter must be incremented by one explicitly inside the while’s local block.
• We use the += operator to add one to the counter. lowerBars += 1 is equivalent to
lowerBars := lowerBars + 1.

Let’s calculate the factorial function using a while structure:

//@version=5
indicator("")
int n = input.int(10, "Factorial of", minval=0)

factorial(int val = na) =>
 int counter = val
 int fact = 1
 result = while counter > 0
 fact := fact * counter
 counter := counter - 1
 fact

// Only evaluate the function on the first bar.
var answer = factorial(n)
plot(answer)

Note that:

• We use input.int() for our input because we need to specify a minval value to protect our
code. While input() also supports the input of “int” type values, it does not support the
minval parameter.

• We have packaged our script’s functionality in a factorial() function which accepts as
an argument the value whose factorial it must calculate. We have used int val = na to
declare our function’s parameter, which says that if the function is called without an
argument, as in factorial(), then the val parameter will initialize to na, which will
prevent the execution of the while loop because its counter > 0 expression will return
na. The while structure will thus initialize the result variable to na. In turn, because the
initialization of result is the return value of the our function’s local block, the function
will return na.

• Note the last line of the while’s local block: fact. It is the local block’s return value, so the
value it had on the while structure’s last iteration.

• Our initialization of result is not required; we do it for readability. We could just as well
have used:

while counter > 0
 fact := fact * counter
 counter := counter - 1
 fact

https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_input
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dint
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#op_%7Bplus%7D=
https://www.tradingview.com/pine-script-reference/v5/#op_while

Type system
• Introduction

• Forms
• Types

• Using forms and types
• Forms

• const
• input
• simple
• series

• Types
• int
• float
• bool
• color
• string
• plot and hline
• line, linefill, label, box and table
• Collections
• User-defined types
• void

• `na` value
• Type templates
• Type casting
• Tuples

Introduction
Pine Script®’s type system is important because it determines what sort of values can be used when
calling Pine Script® functions, which is a requirement to do pretty much anything in Pine Script®.
While it is possible to write very simple scripts without knowing anything about the type system, a
reasonable understanding of it is necessary to achieve any degree of profiency with the language,
and in-depth knowledge of its subtleties will allow you to exploit the full potential of Pine Script®.

The type system uses the form type pair to qualify the type of all values, be they literals, a variable,
the result of an expression, the value returned by functions or the arguments supplied when calling a
function.

The form expresses when a value is known.

The type denotes the nature of a value.

Note

We will often use “type” to refer to the “form type” pair.

The type system is intimately linked to Pine Script®’s execution model and time series concepts.
Understanding all three is key to making the most of the power of Pine Script®.

https://www.tradingview.com/pine-script-docs/en/v5/language/Time_series.html#pagetimeseries
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id3
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#tuples
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#type-casting
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#type-templates
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#na-value
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#void
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#user-defined-types
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#collections
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#line-linefill-label-box-and-table
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#plot-and-hline
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#string
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#color
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#bool
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#float
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#int
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#series
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#simple
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#input
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#const
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#using-forms-and-types
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#types
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#forms
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#introduction

Forms

Pine Script® forms identify when a variable’s value is known. They are:

• “const” for values known at compile time (when adding an indicator to a chart or saving it in
the Pine Script® Editor)

• “input” for values known at input time (when values are changed in a script’s
“Settings/Inputs” tab)

• “simple” for values known at bar zero (when the script begins execution on the chart’s first
historical bar)

• “series” for values known on each bar (any time during the execution of a script on any bar)

Forms are organized in the following hierarchy: const < input < simple < series, where “const” is
considered a weaker form than “input”, for example, and “series” stronger than “simple”. The form
hierarchy translates into the rule that, whenever a given form is required, a weaker form is also
allowed.

An expression’s result is always of the strongest form used in the expression’s calculation.
Furthermore, once a variable acquires a stronger form, that state is irreversible; it can never be
converted back to a weaker form. A variable of “series” form can thus never be converted back to a
“simple” form, for use with a function that requires arguments of that form.

Note that of all these forms, only the “series” form allows values to change dynamically, bar to bar,
during the script’s execution over each bar of the chart’s history. Such values include close or hlc3
or any variable calculated using values of “series” form. Variables of “const”, “input” or “simple”
forms cannot change values once execution of the script has begun.

Types

Pine Script® types identify the nature of a value. They are:

• The fundamental types: “int”, “float”, “bool”, “color” and “string”
• The special types: “plot”, “hline”, “line”, “linefill”, “label”, “box”, “table”, “array”,

“matrix”, and “map”
• User-defined types (UDTs)
• “void”

Each fundamental type refers to the nature of the value contained in a variable: 1 is of type “int”,
1.0 is of type “float”, "AAPL" is of type “string”, etc. Variables of special types contain an ID
referring to an object of the type’s name. A variable of type “label” contains an ID (or pointer)
referring to a label, and so on. The “void” type means no value is returned.

The Pine Script® compiler can automatically convert some types into others when a value is not of
the required type. The auto-casting rules are: int ? float ? bool. See the Type casting section of this
page for more information on type casting.

Except for parameter definitions appearing in function signatures, Pine Script® forms are implicit in
code; they are never declared because they are always determined by the compiler. Types, however,
can be specified when declaring variables, e.g.:

//@version=5
indicator("", "", true)
int periodInput = input.int(100, "Period", minval = 2)
float ma = ta.sma(close, periodInput)
bool xUp = ta.crossover(close, ma)
color maColor = close > ma ? color.lime : color.fuchsia
plot(ma, "MA", maColor)
plotchar(xUp, "Cross Up", "▲", location.top, size = size.tiny)

https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-typecasting
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id5
https://www.tradingview.com/pine-script-reference/v5/#var_hlc3
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id4

Using forms and types

Forms

const

Values of “const” form must be known at compile time, before your script has access to any
information related to the symbol/timeframe information it is running on. Compilation occurs when
you save a script in the Pine Script® Editor, which doesn’t even require it to already be running on
your chart. “const” variables cannot change during the execution of a script.

Variables of “const” form can be initialized using a literal value, or calculated from expressions
using only literal values or other variables of “const” form. Our Style guide recommends using
upper case SNAKE_CASE to name variables of “const” form. While it is not a requirement,
“const” variables can be declared using the var keyword so they are only initialized on the first bar
of the dataset. See the section on `var` for more information.

These are examples of literal values:

• literal int: 1, -1, 42
• literal float: 1., 1.0, 3.14, 6.02E-23, 3e8
• literal bool: true, false
• literal string: "A text literal", "Embedded single quotes 'text'",
'Embedded double quotes "text"'

• literal color: #FF55C6, #FF55C6ff

Note

In Pine Script®, the built-in variables open, high, low, close, volume, time, hl2, hlc3,
ohlc4, etc., are of “series” form because their values can change bar to bar.

The “const” form is a requirement for the arguments to the title and shorttitle parameters
in indicator(), for example. All these are valid variables that can be used as arguments for those
parameters when calling the function:

//@version=5
NAME1 = "My indicator"
var NAME2 = "My Indicator"
var NAME3 = "My" + "Indicator"
var NAME4 = NAME2 + " No. 2"
indicator(NAME4, "", true)
plot(close)

This will trigger a compilation error:

//@version=5
var NAME = "My indicator for " + syminfo.type
indicator(NAME, "", true)
plot(close)

The reason for the error is that the NAME variable’s calculation depends on the value of
syminfo.type which is a “simple string” (syminfo.type returns a string corresponding to the sector
the chart’s symbol belongs to, eg., "crypto", "forex", etc.).

Note that using the := operator to assign a new value to a previously declared “const” variable will
transform it into a “simple” variable, e.g., here with name1, for which we do not use an uppercase
name because it is not of “const” form:

https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dtype
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dtype
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#pagevariabledeclarations-var
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#pagestyleguide
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id8
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id7
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id6

var name1 = "My Indicator "
var NAME2 = "No. 2"
name1 := name1 + NAME2

input

Values of “input” form are known when the values initialized through input.*() functions are
determined. These functions determine the values that can be modified by script users in the script’s
“Settings/Inputs” tab. When these values are changed, this always triggers a re-execution of the
script from the beginning of the chart’s history (bar zero), so variables of “input” form are always
known when the script begins execution, and they do not change during the script’s execution.

Note

The input.source() function yields a value of “series” type — not “input”. This is because built-in
variables such as open, high, low, close, hl2, hlc3, ohlc4, etc., are of “series” form.

The script plots the moving average of a user-defined source and period from a symbol and
timeframe also determined through inputs:

//@version=5
indicator("", "", true)
symbolInput = input.symbol("AAPL", "Symbol")
timeframeInput = input.timeframe("D", "Timeframe")
sourceInput = input.source(close, "Source")
periodInput = input(10, "Period")
v = request.security(symbolInput, timeframeInput, ta.sma(sourceInput,
periodInput))
plot(v)

Note that:

• The symbolInput, timeframeInput and periodInput variables are of “input”
form.

• The sourceInput variable is of “series” form because it is determined from a call to
input.source().

• Our request.security() call is valid because its symbol and timeframe parameters require
a “simple” argument and the “input” form we use is weaker than “simple”. The function’s
expression parameter requires a “series” form argument, and that is what form our
sourceInput variable is. Note that because a “series” form is required there, we could
have used “const”, “input” or “simple” forms as well.

• As per our style guide’s recommendations, we use the “Input” suffix with our input variables
to help readers of our code remember the origin of these variables.

Wherever an “input” form is required, a “const” form can also be used.

simple

Values of “simple” form are known only when a script begins execution on the first bar of a chart’s
history, and they never change during the execution of the script. Built-in variables of the
syminfo.*, timeframe.* and ticker.* families, for example, all return results of “simple”
form because their value depends on the chart’s symbol, which can only be detected when the script
executes on it.

A “simple” form argument is also required for the length argument of functions such as ta.ema()
or ta.rma() which cannot work with dynamic lengths that could change during the script’s
execution.

https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Drma
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dema
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id10
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsource
https://www.tradingview.com/pine-script-reference/v5/#var_ohlc4
https://www.tradingview.com/pine-script-reference/v5/#var_hlc3
https://www.tradingview.com/pine-script-reference/v5/#var_hl2
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsource
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id9

Wherever a “simple” form is required, a “const” or “input” form can also be used.

series

Values of “series” form (also sometimes called dynamic) provide the most flexibility because they
can change on any bar, or even multiples times during the same bar, in loops for example. Built-in
variables such as open, close, high, time or volume are of “series” form, as would be the result of
expressions calculated using them. Functions such as barssince() or crossover() yield a result of
“series” form because it varies bar to bar, as does that of the [] history-referencing operator used to
access past values of a time series. While the “series” form is the most common form used in Pine
Script®, it is not always allowed as arguments to built-in functions.

Suppose you want to display the value of pivots on your chart. This will require converting values
into strings, so the string values your code will be using will be of “series string” type. The
label.new() function can be used to place such “series string” text on the chart because its text
parameter accepts arguments of “series” form:

//@version=5
indicator("", "", true)
pivotBarsInput = input(3)
hiP = ta.pivothigh(high, pivotBarsInput, pivotBarsInput)
if not na(hiP)
 label.new(bar_index[pivotBarsInput], hiP, str.tostring(hiP, format.mintick),
 style = label.style_label_down,
 color = na,
 textcolor = color.silver)
plotchar(hiP, "hiP", "•", location.top, size = size.tiny)

Note that:

• The str.tostring(hiP, format.mintick) call we use to convert the pivot’s
value to a string yields a “series string” result, which will work with label.new().

• While prices appear at the pivot, the pivots actually require pivotBarsInput bars to
have elapsed before they can be detected. Pivot prices only appear on the pivot because we
plot them in the past after the pivot’s detection, using bar_index[pivotBarsInput]
(the bar_index’s value, offset pivotBarsInput bars back). In real time, these prices
would only appear pivotBarsInput bars after the actual pivot.

• We print a blue dot using plotchar() when a pivot is detected in our code.
• Pine Script®’s plotshape() can also be used to position text on the chart, but because its
text parameter requires a “const string” argument, we could not have used it in place of
label.new() in our script.

Wherever a “series” form is required, a “const”, “input” or “simple” form can also be used.

Types

int

Integer literals must be written in decimal notation, e.g.:

1
-1
750

Built-in variables such as bar_index, time, timenow, time_close, or dayofmonth all return values of
type “int”.

https://www.tradingview.com/pine-script-reference/v5/#var_dayofmonth
https://www.tradingview.com/pine-script-reference/v5/#var_time_close
https://www.tradingview.com/pine-script-reference/v5/#var_timenow
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id13
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id12
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-reference/v5/#fun_crossover
https://www.tradingview.com/pine-script-reference/v5/#fun_barssince
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id11

float

Floating-point literals contain a delimiter (the symbol .) and may also contain the symbol e or E
(which means “multiply by 10 to the power of X”, where X is the number after the symbol e), e.g.:

3.14159 // Rounded value of Pi (π)
- 3.0
6.02e23 // 6.02 * 10^23 (a very large value)
1.6e-19 // 1.6 * 10^-19 (a very small value)

The internal precision of floats in Pine Script® is 1e-10.

bool

There are only two literals representing bool values:

true // true value
false // false value

When an expression of type “bool” returns na and it is used to test a conditional statement or
operator, the “false” branch is executed.

color

Color literals have the following format: #RRGGBB or #RRGGBBAA. The letter pairs represent 00
to FF hexadecimal values (0 to 255 in decimal) where:

• RR, GG and BB pairs are the values for the color’s red, green and blue components
• AA is an optional value for the color’s transparency (or alpha component) where 00 is

invisible and FF opaque. When no AA pair is supplied, FF is used.
• The hexadecimal letters can be upper or lower case

Examples:

#000000 // black color
#FF0000 // red color
#00FF00 // green color
#0000FF // blue color
#FFFFFF // white color
#808080 // gray color
#3ff7a0 // some custom color
#FF000080 // 50% transparent red color
#FF0000ff // same as #FF0000, fully opaque red color
#FF000000 // completely transparent color

Pine Script® also has built-in color constants such as color.green, color.red, color.orange, color.blue
(the default color used in plot() and other plotting functions), etc.

When using color built-ins, is possible to add transparency information to them with color.new.

Note that when specifying red, green or blue components in color.*() functions, a 0-255
decimal value must be used. When specifying transparency in such functions, it is in the form of a
0-100 value (which can be of “float” type to access the underlying 255 potential valoues) where the
scale 00-FF scale for color literals is inverted: 100 is thus invisible and 0 is opaque.

Here is an example:

//@version=5
indicator("Shading the chart's background", "", true)
BASE_COLOR = color.navy
bgColor = dayofweek == dayofweek.monday ? color.new(BASE_COLOR, 50) :

https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_color%7Bdot%7Dblue
https://www.tradingview.com/pine-script-reference/v5/#var_color%7Bdot%7Dorange
https://www.tradingview.com/pine-script-reference/v5/#var_color%7Bdot%7Dred
https://www.tradingview.com/pine-script-reference/v5/#var_color%7Bdot%7Dgreen
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#pagecolors-constantcolors
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id16
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id15
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id14

 dayofweek == dayofweek.tuesday ? color.new(BASE_COLOR, 60) :
 dayofweek == dayofweek.wednesday ? color.new(BASE_COLOR, 70) :
 dayofweek == dayofweek.thursday ? color.new(BASE_COLOR, 80) :
 dayofweek == dayofweek.friday ? color.new(BASE_COLOR, 90) :
 color.new(color.blue, 80)
bgcolor(bgColor)

See the page on colors for more information on using colors in Pine Script®.

string

String literals may be enclosed in single or double quotation marks, e.g.:

"This is a double quoted string literal"
'This is a single quoted string literal'

Single and double quotation marks are functionally equivalent. A string enclosed within double
quotation marks may contain any number of single quotation marks, and vice versa:

"It's an example"
'The "Star" indicator'

You can escape the string’s delimiter in the string by using a backslash. For example:

'It\'s an example'
"The \"Star\" indicator"

You can concatenate strings using the + operator.

plot and hline

Pine Script®’s fill() function fills the space between two lines with a color. Both lines must have
been plotted with either plot() or hline() function calls. Each plotted line is referred to in the fill()
function using IDs which are of “plot” or “hline” type, e.g.:

//@version=5
indicator("", "", true)
plotID1 = plot(high)
plotID2 = plot(math.max(close, open))
fill(plotID1, plotID2, color.yellow)

Note that there is no plot or hline keyword to explicitly declare the type of plot() or hline() IDs.

line, linefill, label, box and table

Drawings appeared in Pine Script® starting with v4. Each drawing has its own type: line, linefill,
label, box, table.

Each type is also used as a namespace containing all the built-in functions used to operate on each
type of drawing. One of these is a new() constructor used to create an object of that type:
line.new(), linefill.new(), label.new(), box.new() and table.new().

These functions all return an ID which is a reference that uniquely identifies a drawing object. IDs
are always of “series” form, thus their form and type is “series line”, “series label”, etc. Drawing
IDs act like a pointer in that they are used to reference a specific instance of a drawing in all the
functions of that drawing’s namespace. For example, the line ID returned by a line.new() call will
then be used to refer to it when comes time to delete the line using line.delete().

https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Ddelete
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#op_table
https://www.tradingview.com/pine-script-reference/v5/#op_box
https://www.tradingview.com/pine-script-reference/v5/#op_label
https://www.tradingview.com/pine-script-reference/v5/#op_linefill
https://www.tradingview.com/pine-script-reference/v5/#op_line
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id19
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id18
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id17
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#pagecolors

Collections

Collections in Pine Script® (arrays, matrices, and maps) utilize a reference ID, much like other
special types (e.g., labels). The type of the ID defines the type of elements the collection will
contain. In Pine, we specify array, matrix, and map types by appending a type template to the array,
matrix, or map keywords:

• array<int> defines an array containing “int” elements.
• array<label> defines an array containing “label” IDs.
• array<UDT> defines an array containing objects of a user-defined type (UDT).
• matrix<float> defines a matrix containing “float” elements.
• matrix<UDT> defines a matrix containing objects of a user-defined type (UDT).
• map<string, float> defines a map containing “string” keys and “float” values.
• map<int, UDT> defines a map containing “int” keys and values of a user-defined type

(UDT).

For example, one can declare an “int” array with a single element value of 10 in any of the
following, equivalent ways:

a1 = array.new<int>(1, 10)
array<int> a2 = array.new<int>(1, 10)
a3 = array.from(10)
array<int> a4 = array.from(10)

Note that:
• The int[] syntax can also specify an array of “int” elements, but its use is

discouraged. No equivalent exists to specify the types of matrices or maps in that way.
• Type-specific built-ins exist for arrays, such as array.new_int(), but the more generic

array.new<type> form is preferred, which would be array.new<int>() to create
an array of “int” elements.

User-defined types

The type keyword allows the creation of user-defined types (UDTs) from which objects can be
created. UDTs are composite types; they contain an arbitrary number of fields that can be of any
type. The syntax to define a user-defined type is:

where:

• export is used to export the UDT from a library. See the Libraries page for more
information.

• <UDT_identifier> is the name of the user-defined type.
• <field_type> is the type of the field.
• <field_name> is the name of the field.
• <value> is an optional default value for the field, which will be assigned to it when new

objects of that UDT are created. The field’s default value will be na if none is specified. The
same rules as those governing the default values of parameters in function signatures apply
to the default values of fields. For example, the [] history-referencing operator cannot be
used with them, and expressions are not allowed.

In this example, we create a UDT containing two fields to hold pivot information, the time of the
pivot’s bar and its price level:

type pivotPoint
 int openTime

https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#pagelibraries-objects
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#pageobjects
https://www.tradingview.com/pine-script-reference/v5/#op_type
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id21
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dnew_int
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-reference/v5/#type_map
https://www.tradingview.com/pine-script-reference/v5/#type_matrix
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-typetemplates
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id20

 float level

User-defined types can be embedded, so a field can be of the same type as the UDT it belongs to.
Here, we add a field to our previous pivotPoint type that will hold the pivot information for
another pivot point:

type pivotPoint
 int openTime
 float level
 pivotPoint nextPivot

Two built-in methods can be used with a UDT: new() and copy(). Read about them in the
Objects page.

void

There is a “void” type in Pine Script®. Functions having only side-effects and returning no usable
result return the “void” type. An example of such a function is alert(); it does something (triggers an
alert event), but it returns no useful value.

A “void” result cannot be used in an expression or assigned to a variable. No void keyword exists

in Pine Script®, as variables cannot be declared using the “void” type.

`na` value
In Pine Script®, there is a special value called na, which is an acronym for not available, meaning
the value of an expression or variable is undefined. It is similar to the null value in Java, or None
in Python.

na values can be automatically cast to almost any type. In some cases, however, the compiler cannot
automatically infer a type for an na value because more than one automatic type-casting rule can be
applied. For example:

// Compilation error!
myVar = na

Here, the compiler cannot determine if myVar will be used to plot something, as in
plot(myVar) where its type would be “float”, or to set some text as in
label.set_text(lb, text = myVar) where its type would be “string”, or for some other
purpose. Such cases must be explicitly resolved in one of two ways:

float myVar = na

or

myVar = float(na)

To test if some value is na, a special function must be used: na(). For example:

myClose = na(myVar) ? 0 : close

Do not use the == operator to test for na values, as this method is unreliable.

Designing your calculations so they are na-resistant is often useful. In this example, we define a
condition that is true when the bar’s close is higher than the previous one. For this calculation to
work correctly on the dataset’s first bar where no previous close exists and close[1] will return
na, we use the nz() function to replace it with the current bar’s open for that special case:

https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#fun_nz
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id23
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id22
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#pageobjects

bool risingClose = close > nz(close[1], open)

Protecting against na values can also be useful to prevent an initial na value from propagating in a
calculation’s result on all bars. This happens here because the initial value of ath is na, and
math.max() returns na if one of its arguments is na:

// Declare `ath` and initialize it with `na` on the first bar.
var float ath = na
// On all bars, calculate the maximum between the `high` and the previous value
of `ath`.
ath := math.max(ath, high)

To protect against this, we could instead use:

var float ath = na
ath := math.max(nz(ath), high)

where we are replacing any na values of ath with zero. Even better would be:

var float ath = high
ath := math.max(ath, high)

Type templates
Type templates specify the data types that collections (arrays, matrices, and maps) can contain.

Templates for arrays and matrices consist of a single type identifier surrounded by angle brackets,
e.g., <int>, <label>, and <PivotPoint> (where PivotPoint is a user-defined type
(UDT)).

Templates for maps consist of two type identifiers enclosed in angle brackets, where the first
specifies the type of keys in each key-value pair, and the second specifies the value type. For
example, <string, float> is a type template for a map that holds string keys and float
values.

Users can construct type templates from:

• Fundamental types: “int”, “float”, “bool”, “color”, and “string”
• The following special types: “line”, “linefill”, “label”, “box”, and “table”
• User-defined types (UDTs)

Note that:
• Maps can use any of these types as values, but they can only accept fundamental types

as keys.

Scripts use type templates to declare variables that point to collections, and when creating new
collection instances. For example:

//@version=5
indicator("Type templates demo")

//@variable A variable initially assigned to `na` that accepts arrays of `int`
values.
array<int> intArray = na
//@variable An empty matrix that holds `float` values.
floatMatrix = matrix.new<float>()
//@variable An empty map that holds `string` keys and `color` values.
stringColorMap = map.new<string, color>()

https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id24
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_math%7Bdot%7Dmax
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na

Type casting
There is an automatic type-casting mechanism in Pine Script® which can cast (or convert) certain
types to another. The auto-casting rules are: “int” ? “float” ? “bool”, which means that when a
“float” is required, an “int” can be used in its place, and when a “bool” value is required, an “int” or
“float” value can be used in its place.

See auto-casting in action in this code:

//@version=5
indicator("")
plotshape(close)

Note that:

• plotshape() requires a “series bool” argument for its first parameter named series. The
true/false value of that “bool” argument determines if the function plots a shape or not.

• We are here calling plotshape() with close as its first argument. This would not be allowed
without Pine’s auto-casting rules, which allow a “float” to be cast to a “bool”. When a
“float” is cast to a “bool”, any non-zero values are converted to true, and zero values are
converted to false. As a result of this, our code will plot an “X” on all bars, as long as
close is not equal to zero.

It may sometimes be necessary to cast one type into another because auto-casting rules will not
suffice. For these cases, explicit type-casting functions exist. They are: int(), float(), bool(), color(),
string(), line(), linefill(), label(), box(), and table().

This is code that will not compile because we fail to convert the type of the argument used for
length when calling ta.sma():

//@version=5
indicator("")
len = 10.0
s = ta.sma(close, len) // Compilation error!
plot(s)

The code fails to compile with the following error: Cannot call ‘ta.sma` with argument
‘length’=’len’. An argument of ‘const float’ type was used but a ‘series int’ is expected. The
compiler is telling us that we supplied a “float” value where an “int” is required. There is no auto-
casting rule that can automatically cast a “float” to an “int”, so we will need to do the job ourselves.
For this, we will use the int() function to force the type conversion of the value we supply as a
length to ta.sma() from “float” to “int”:

//@version=5
indicator("")
len = 10.0
s = ta.sma(close, int(len))
plot(s)

Explicit type-casting can also be useful when declaring variables and initializing them to na which
can be done in two ways:

// Cast `na` to the "label" type.
lbl = label(na)
// Explicitly declare the type of the new variable.
label lbl = na

https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dsma
https://www.tradingview.com/pine-script-reference/v5/#fun_int
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dsma
https://www.tradingview.com/pine-script-reference/v5/#fun_table
https://www.tradingview.com/pine-script-reference/v5/#fun_box
https://www.tradingview.com/pine-script-reference/v5/#fun_label
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill
https://www.tradingview.com/pine-script-reference/v5/#fun_line
https://www.tradingview.com/pine-script-reference/v5/#fun_string
https://www.tradingview.com/pine-script-reference/v5/#fun_color
https://www.tradingview.com/pine-script-reference/v5/#fun_bool
https://www.tradingview.com/pine-script-reference/v5/#fun_float
https://www.tradingview.com/pine-script-reference/v5/#fun_int
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id25

Tuples
A tuple is a comma-separated set of expressions enclosed in brackets that can be used when a
function or a local block must return more than one variable as a result. For example:

calcSumAndMult(a, b) =>
 sum = a + b
 mult = a * b
 [sum, mult]

In this example there is a two-element tuple on the last statement of the function’s code block,
which is the result returned by the function. Tuple elements can be of any type. There is also a
special syntax for calling functions that return tuples, which uses a tuple declaration on the left side
of the equal sign in what is a multi-variable declaration. The result of a function such as
calcSumAndMult() that returns a tuple must be assigned to a tuple declaration, i.e., a set of
comma-separated list of new variables that will receive the values returned by the function. Here,
the value of the sum and mult variables calculated by the function will be assigned to the s and m
variables:

[s, m] = calcSumAndMul(high, low)

Note that the type of s and m cannot be explicitly defined; it is always inferred by the type of the
function return results.

Tuples can be useful to request multiple values in one request.security() call:

roundedOHLC() =>
 [math.round_to_mintick(open), math.round_to_mintick(high),
math.round_to_mintick(low), math.round_to_mintick(close)]
[op, hi, lo, cl] = request.security(syminfo.tickerid, "D", roundedOHLC())

or:

[op, hi, lo, cl] = request.security(syminfo.tickerid, "D",
[math.round_to_mintick(open), math.round_to_mintick(high),
math.round_to_mintick(low), math.round_to_mintick(close)])

or this form if no rounding is required

[op, hi, lo, cl] = request.security(syminfo.tickerid, "D", [open, high, low,
close])

Tuples can also be used as return results of local blocks, in an if statement for example:

[v1, v2] = if close > open
 [high, close]
else
 [close, low]

They cannot be used in ternaries, however, because the return values of a ternary statement are not
considered as local blocks. This is not allowed:

// Not allowed.
[v1, v2] = close > open ? [high, close] : [close, low]

Please note that the items within a tuple returned from a function may be of simple or series form,
depending on its contents. If a tuple contains a series value, all other elements within the tuple will
also be of the series form. For example:

//@version=5
indicator("tuple_typeforms")

https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id26

makeTicker(simple string prefix, simple string ticker) =>
 tId = prefix + ":" + ticker // simple string
 source = close // series float
 [tId, source]

// Both variables are series now.
[tId, source] = makeTicker("BATS", "AAPL")

// Error cannot call 'request.security' with 'series string' tId.
r = request.security(tId, "", source)

plot(r)

Built-ins
• Introduction
• Built-in variables
• Built-in functions

Introduction
Pine Script® has hundreds of built-in variables and functions. They provide your scripts with
valuable information and make calculations for you, dispensing you from coding them. The better
you know the built-ins, the more you will be able to do with your Pine scripts.

In this page we present an overview of some of Pine Script®’s built-in variables and functions. They
will be covered in more detail in the pages of this manual covering specific themes.

All built-in variables and functions are defined in the Pine Script® v5 Reference Manual. It is called
a “Reference Manual” because it is the definitive reference on the Pine Script® language. It is an
essential tool that will accompany you anytime you code in Pine, whether you are a beginner or an
expert. If you are learning your first programming language, make the Reference Manual your
friend. Ignoring it will make your programming experience with Pine Script® difficult and
frustrating — as it would with any other programming language.

Variables and functions in the same family share the same namespace, which is a prefix to the
function’s name. The ta.sma() function, for example, is in the ta namespace, which stands for
“technical analysis”. A namespace can contain both variables and functions.

Some variables have function versions as well, e.g.:

• The ta.tr variable returns the “True Range” of the current bar. The ta.tr(true) function call
also returns the “True Range”, but when the previous close value which is normally needed
to calculate it is na, it calculates using high - low instead.

• The time variable gives the time at the open of the current bar. The time(timeframe) function
returns the time of the bar’s open from the timeframe specified, even if the chart’s
timeframe is different. The time(timeframe, session) function returns the time of the bar’s
open from the timeframe specified, but only if it is within the session time. The
time(timeframe, session, timezone) function returns the time of the bar’s open from the
timeframe specified, but only if it is within the session time in the specified
timezone.

https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dtr
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dtr
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dsma
https://www.tradingview.com/pine-script-reference/v5/
https://www.tradingview.com/pine-script-reference/v5/
https://www.tradingview.com/pine-script-docs/en/v5/language/Built-ins.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/language/Built-ins.html#built-in-functions
https://www.tradingview.com/pine-script-docs/en/v5/language/Built-ins.html#built-in-variables
https://www.tradingview.com/pine-script-docs/en/v5/language/Built-ins.html#introduction

Built-in variables
Built-in variables exist for different purposes. These are a few examples:

• Price- and volume-related variables: open, high, low, close, hl2, hlc3, ohlc4, and volume.
• Symbol-related information in the syminfo namespace: syminfo.basecurrency,

syminfo.currency, syminfo.description, syminfo.mintick, syminfo.pointvalue,
syminfo.prefix, syminfo.root, syminfo.session, syminfo.ticker, syminfo.tickerid,
syminfo.timezone, and syminfo.type.

• Timeframe (a.k.a. “interval” or “resolution”, e.g., 15sec, 30min, 60min, 1D, 3M) variables in
the timeframe namespace: timeframe.isseconds, timeframe.isminutes,
timeframe.isintraday, timeframe.isdaily, timeframe.isweekly, timeframe.ismonthly,
timeframe.isdwm, timeframe.multiplier, and timeframe.period.

• Bar states in the barstate namespace (see the Bar states page): barstate.isconfirmed,
barstate.isfirst, barstate.ishistory, barstate.islast, barstate.islastconfirmedhistory,
barstate.isnew, and barstate.isrealtime.

• Strategy-related information in the strategy namespace: strategy.equity,
strategy.initial_capital, strategy.grossloss, strategy.grossprofit, strategy.wintrades,
strategy.losstrades, strategy.position_size, strategy.position_avg_price, strategy.wintrades,
etc.

Built-in functions
Many functions are used for the result(s) they return. These are a few examples:

• Math-related functions in the math namespace: math.abs(), math.log(), math.max(),
math.random(), math.round_to_mintick(), etc.

• Technical indicators in the ta namespace: ta.sma(), ta.ema(), ta.macd(), ta.rsi(),
ta.supertrend(), etc.

• Support functions often used to calculate technical indicators in the ta namespace:
ta.barssince(), ta.crossover(), ta.highest(), etc.

• Functions to request data from other symbols or timeframes in the request namespace:
request.dividends(), request.earnings(), request.financial(), request.quandl(),
request.security(), request.splits().

• Functions to manipulate strings in the str namespace: str.format(), str.length(),
str.tonumber(), str.tostring(), etc.

• Functions used to define the input values that script users can modify in the script’s
“Settings/Inputs” tab, in the input namespace: input(), input.color(), input.int(),
input.session(), input.symbol(), etc.

• Functions used to manipulate colors in the color namespace: color.from_gradient(),
color.new(), color.rgb(), etc.

Some functions do not return a result but are used for their side effects, which means they do
something, even if they don’t return a result:

• Functions used as a declaration statement defining one of three types of Pine scripts, and its
properties. Each script must begin with a call to one of these functions: indicator(),
strategy() or library().

• Plotting or coloring functions: bgcolor(), plotbar(), plotcandle(), plotchar(), plotshape(),
fill().

• Strategy functions placing orders, in the strategy namespace: strategy.cancel(),
strategy.close(), strategy.entry(), strategy.exit(), strategy.order(), etc.

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dorder
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclose
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dcancel
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-reference/v5/#fun_plotbar
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Drgb
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dfrom_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsymbol
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsession
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dint
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_input
https://www.tradingview.com/pine-script-reference/v5/#fun_str%7Bdot%7Dtostring
https://www.tradingview.com/pine-script-reference/v5/#fun_str%7Bdot%7Dtonumber
https://www.tradingview.com/pine-script-reference/v5/#fun_str%7Bdot%7Dlength
https://www.tradingview.com/pine-script-reference/v5/#fun_str%7Bdot%7Dformat
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsplits
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dquandl
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dfinancial
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dearnings
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Ddividends
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dhighest
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dcrossover
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dbarssince
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dsupertrend
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Drsi
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dmacd
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dema
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dsma
https://www.tradingview.com/pine-script-reference/v5/#fun_math%7Bdot%7Dround_to_mintick
https://www.tradingview.com/pine-script-reference/v5/#fun_math%7Bdot%7Drandom
https://www.tradingview.com/pine-script-reference/v5/#fun_math%7Bdot%7Dmax
https://www.tradingview.com/pine-script-reference/v5/#fun_math%7Bdot%7Dlog
https://www.tradingview.com/pine-script-reference/v5/#fun_math%7Bdot%7Dabs
https://www.tradingview.com/pine-script-docs/en/v5/language/Built-ins.html#id3
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dwintrades
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dposition_avg_price
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dposition_size
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dlosstrades
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dwintrades
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dgrossprofit
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dgrossloss
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dinitial_capital
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dequity
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disrealtime
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disnew
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Dislastconfirmedhistory
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Dislast
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Dishistory
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disfirst
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disconfirmed
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#pagebarstates
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Dperiod
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Dmultiplier
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Disdwm
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Dismonthly
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Disweekly
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Disdaily
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Disintraday
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Disminutes
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Disseconds
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dtype
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dtimezone
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dtickerid
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dticker
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dsession
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Droot
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dprefix
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dpointvalue
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dmintick
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Ddescription
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dcurrency
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dbasecurrency
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#var_ohlc4
https://www.tradingview.com/pine-script-reference/v5/#var_hlc3
https://www.tradingview.com/pine-script-reference/v5/#var_hl2
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-docs/en/v5/language/Built-ins.html#id2

• Strategy functions returning information on indivdual past trades, in the strategy
namespace: strategy.closedtrades.entry_bar_index(), strategy.closedtrades.entry_price(),
strategy.closedtrades.entry_time(), strategy.closedtrades.exit_bar_index(),
strategy.closedtrades.max_drawdown(), strategy.closedtrades.max_runup(),
strategy.closedtrades.profit(), etc.

• Functions to generate alert events: alert() and alertcondition().

Other functions return a result, but we don’t always use it, e.g.: hline(), plot(), array.pop(),
label.new(), etc.

All built-in functions are defined in the Pine Script® v5 Reference Manual. You can click on any of
the function names listed here to go to its entry in the Reference Manual, which documents the
function’s signature, i.e., the list of parameters it accepts and the form-type of the value(s) it returns
(a function can return more than one result). The Reference Manual entry will also list, for each
parameter:

• Its name.
• The form-type of the value it requires (we use argument to name the values passed to a

function when calling it).
• If the parameter is required or not.

All built-in functions have one or more parameters defined in their signature. Not all parameters are
required for every function.

Let’s look at the ta.vwma() function, which returns the volume-weighted moving average of a
source value. This is its entry in the Reference Manual:

The entry gives us the information we need to use it:

• What the function does.

• Its signature (or definition):

ta.vwma(source, length) → series float

• The parameters it includes: source and length

• The form and type of the result it returns: “series float”.

• An example showing it in use: plot(ta.vwma(close, 15)).

• An example showing what it does, but in long form, so you can better understand its
calculations. Note that this is meant to explain — not as usable code, because it is more
complicated and takes longer to execute. There are only disadvantages to using the long
form.

• The “RETURNS” section explains exacty what value the function returns.

• The “ARGUMENTS” section lists each parameter and gives the critical information
concerning what form-type is required for arguments used when calling the function.

• The “SEE ALSO” section refers you to related Reference Manual entries.

This is a call to the function in a line of code that declares a myVwma variable and assigns the result
of ta.vwma(close, 20) to it:

myVwma = ta.vwma(close, 20)

https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dvwma
https://www.tradingview.com/pine-script-reference/v5/
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dpop
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclosedtrades%7Bdot%7Dprofit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclosedtrades%7Bdot%7Dmax_runup
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclosedtrades%7Bdot%7Dmax_drawdown
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclosedtrades%7Bdot%7Dexit_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclosedtrades%7Bdot%7Dentry_time
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclosedtrades%7Bdot%7Dentry_price
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclosedtrades%7Bdot%7Dentry_bar_index

Note that:

• We use the built-in variable close as the argument for the source parameter.
• We use 20 as the argument for the length parameter.
• If placed in the global scope (i.e., starting in a line’s first position), it will be executed by the

Pine Script® runtime on each bar of the chart.

We can also use the parameter names when calling the function. Parameter names are called
keyword arguments when used in a function call:

myVwma = ta.vwma(source = close, length = 20)

You can change the position of arguments when using keyword arguments, but only if you use them
for all your arguments. When calling functions with many parameters such as indicator(), you can
also forego keyword arguments for the first arguments, as long as you don’t skip any. If you skip
some, you must then use keyword arguments so the Pine Script® compiler can figure out which
parameter they correspond to, e.g.:

indicator("Example", "Ex", true, max_bars_back = 100)

Mixing things up this way is not allowed:

indicator(precision = 3, "Example") // Compilation error!

When calling built-ins, it is critical to ensure that the arguments you use are of the form and
type required, which will vary for each parameter.

To learn how to do this, one needs to understand Pine Script®’s type system. The Reference Manual
entry for each built-in function includes an “ARGUMENTS” section which lists the form-type
required for the argument supplied to each of the function’s parameters.

User-defined functions
• Introduction
• Single-line functions
• Multi-line functions
• Scopes in the script
• Functions that return multiple results
• Limitations

Introduction
User-defined functions are functions that you write, as opposed to the built-in functions in Pine
Script®. They are useful to define calculations that you must do repetitevely, or that you want to
isolate from your script’s main section of calculations. Think of user-defined functions as a way to
extend the capabilities of Pine Script®, when no built-in function will do what you need.

You can write your functions in two ways:

• In a single line, when they are simple, or
• On multiple lines

Functions can be located in two places:

https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#limitations
https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#functions-that-return-multiple-results
https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#scopes-in-the-script
https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#multi-line-functions
https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#single-line-functions
https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#introduction
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#var_close

• If a function is only used in one script, you can include it in the script where it is used. See
our Style guide for recommendations on where to place functions in your script.

• You can create a Pine Script® library to include your functions, which makes them reusable
in other scripts without having to copy their code. Distinct requirements exist for library
functions. They are explained in the page on libraries.

Whether they use one line or multiple lines, user-defined functions have the following
characteristics:

• They cannot be embedded. All functions are defined in the script’s global scope.
• They do not support recursion. It is not allowed for a function to call itself from within its

own code.
• The type of the value returned by a function is determined automatically and depends on the

type of arguments used in each particular function call.
• Each function call

Single-line functions
Simple functions can often be written in one line. This is the formal definition of single-line
functions:

<function_declaration>
 <identifier>(<parameter_list>) => <return_value>

<parameter_list>
 {<parameter_definition>{, <parameter_definition>}}

<parameter_definition>
 [<identifier> = <default_value>]

<return_value>
 <statement> | <expression> | <tuple>

Here is an example:

f(x, y) => x + y

After the function f() has been declared, it’s possible to call it using different types of arguments:

a = f(open, close)
b = f(2, 2)
c = f(open, 2)

In the example above, the type of variable a is series because the arguments are both series. The
type of variable b is integer because arguments are both literal integers. The type of variable c is
series because the addition of a series and literal integer produces a series result.

Multi-line functions
Pine Script® also supports multi-line functions with the following syntax:

<identifier>(<parameter_list>) =>
 <local_block>

<identifier>(<list of parameters>) =>
 <variable declaration>
 ...
 <variable declaration or expression>

https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#id3
https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#pagelibraries
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#pagelibraries
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#pagestyleguide-functiondeclarations

where:

<parameter_list>
 {<parameter_definition>{, <parameter_definition>}}

<parameter_definition>
 [<identifier> = <default_value>]

The body of a multi-line function consists of several statements. Each statement is placed on a
separate line and must be preceded by 1 indentation (4 spaces or 1 tab). The indentation before the
statement indicates that it is a part of the body of the function and not part of the script’s global
scope. After the function’s code, the first statement without an indent indicates the body of the
function has ended.

Either an expression or a declared variable should be the last statement of the function’s body. The
result of this expression (or variable) will be the result of the function’s call. For example:

geom_average(x, y) =>
 a = x*x
 b = y*y
 math.sqrt(a + b)

The function geom_average has two arguments and creates two variables in the body: a and b.
The last statement calls the function math.sqrt (an extraction of the square root). The
geom_average call will return the value of the last expression: (math.sqrt(a + b)).

Scopes in the script
Variables declared outside the body of a function or of other local blocks belong to the global scope.
User-declared and built-in functions, as well as built-in variables also belong to the global scope.

Each function has its own local scope. All the variables declared within the function, as well as the
function’s arguments, belong to the scope of that function, meaning that it is impossible to reference
them from outside — e.g., from the global scope or the local scope of another function.

On the other hand, since it is possible to refer to any variable or function declared in the global
scope from the scope of a function (except for self-referencing recursive calls), one can say that the
local scope is embedded into the global scope.

In Pine Script®, nested functions are not allowed, i.e., one cannot declare a function inside another
one. All user functions are declared in the global scope. Local scopes cannot intersect with each
other.

Functions that return multiple results
In most cases a function returns only one result, but it is possible to return a list of results (a tuple-
like result):

fun(x, y) =>
 a = x+y
 b = x-y
 [a, b]

Special syntax is required for calling such functions:

[res0, res1] = fun(open, close)
plot(res0)
plot(res1)

https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#id4

Limitations
User-defined functions can use any of the Pine Script® built-ins, except: barcolor(), fill(), hline(),
indicator(), library(), plot(), plotbar(), plotcandle(), plotchar(), plotshape() and strategy().

Objects
• Introduction
• Creating objects
• Changing field values
• Collecting objects
• Copying objects
• Shadowing

Note

This page contains advanced material. If you are a beginning Pine Script® programmer, we
recommend you become familiar with other, more accessible Pine Script® features before you
venture here.

Introduction
Pine Script® objects are instances of user-defined types (UDTs). They are the equivalent of
variables containing parts called fields, each able to hold independent values that can be of various
types.

Experienced programmers can think of UDTs as methodless classes. They allow users to create
custom types that organize different values under one logical entity.

Creating objects
Before an object can be created, its type must be defined. The User-defined types section of the
Type system page explains how to do so.

Let’s define a pivotPoint type to hold pivot information:

type pivotPoint
 int x
 float y
 string xloc = xloc.bar_time

Note that:

• We use the type keyword to declare the creation of a UDT.
• We name our new UDT pivotPoint.
• After the first line, we create a local block containing the type and name of each field.
• The x field will hold the x-coordinate of the pivot. It is declared as an “int” because it will

hold either a timestamp or a bar index of “int” type.
• y is a “float” because it will hold the pivot’s price.
• xloc is a field that will specify the units of x: xloc.bar_index or xloc.bar_time. We set its

default value to xloc.bar_time by using the = operator. When an object is created from that
UDT, its xloc field will thus be set to that value.

https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_index
https://www.tradingview.com/pine-script-reference/v5/#op_type
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#shadowing
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#copying-objects
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#collecting-objects
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#changing-field-values
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#creating-objects
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#introduction
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-reference/v5/#fun_plotbar
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_barcolor
https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#id6

Now that our pivotPoint UDT is defined, we can proceed to create objects from it. We create
objects using the UDT’s new() built-in method. To create a new foundPoint object from our
pivotPoint UDT, we use:

foundPoint = pivotPoint.new()

We can also specify field values for the created object using the following:

foundPoint = pivotPoint.new(time, high)

Or the equivalent:

foundPoint = pivotPoint.new(x = time, y = high)

At this point, the foundPoint object’s x field will contain the value of the time built-in when it is
created, y will contain the value of high and the xloc field will contain its default value of
xloc.bar_time because no value was defined for it when creating the object.

Object placeholders can also be created by declaring na object names using the following:

pivotPoint foundPoint = na

This example displays a label where high pivots are detected. The pivots are detected legsInput
bars after they occur, so we must plot the label in the past for it to appear on the pivot:

//@version=5
indicator("Pivot labels", overlay = true)
int legsInput = input(10)

// Define the `pivotPoint` UDT.
type pivotPoint
 int x
 float y
 string xloc = xloc.bar_time

// Detect high pivots.
pivotHighPrice = ta.pivothigh(legsInput, legsInput)
if not na(pivotHighPrice)
 // A new high pivot was found; display a label where it occurred `legsInput`
bars back.
 foundPoint = pivotPoint.new(time[legsInput], pivotHighPrice)
 label.new(
 foundPoint.x,
 foundPoint.y,
 str.tostring(foundPoint.y, format.mintick),
 foundPoint.xloc,
 textcolor = color.white)

Take note of this line from the above example:

foundPoint = pivotPoint.new(time[legsInput], pivotHighPrice)

This could also be written using the following:

pivotPoint foundPoint = na
foundPoint := pivotPoint.new(time[legsInput], pivotHighPrice)

When an object is created using var or varip, those keywords apply to all of the object’s fields:

//@version=5
indicator("")
type barInfo
 int i = bar_index

https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_time
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_time

 int t = time
 float c = close

// Created on bar zero.
var firstBar = barInfo.new()
// Created on every bar.
currentBar = barInfo.new()

plot(firstBar.i)
plot(currentBar.i)

Changing field values
The value of an object’s fields can be changed using the := reassignment operator.

This line of our previous example:

foundPoint = pivotPoint.new(time[legsInput], pivotHighPrice)

Could be written using the following:

foundPoint = pivotPoint.new()
foundPoint.x := time[legsInput]
foundPoint.y := pivotHighPrice

Collecting objects
Pine Script® collections (arrays, matrices, and maps) can contain objects, allowing users to add
virtual dimensions to their data structures. To declare a collection of objects, pass a UDT name into
its type template.

This example declares an empty array that will hold objects of a pivotPoint user-defined type:

pivotHighArray = array.new<pivotPoint>()

To explicitly declare the type of a variable as an array, matrix, or map of a user-defined type, use the
collection’s type keyword followed by its type template. For example:

var array<pivotPoint> pivotHighArray = na
pivotHighArray := array.new<pivotPoint>()

Let’s use what we have learned to create a script that detects high pivot points. The script first
collects historical pivot information in an array. It then loops through the array on the last historical
bar, creating a label for each pivot and connecting the pivots with lines:

//@version=5
indicator("Pivot Points High", overlay = true)

int legsInput = input(10)

// Define the `pivotPoint` UDT containing the time and price of pivots.
type pivotPoint
 int openTime
 float level

// Create an empty `pivotPoint` array.
var pivotHighArray = array.new<pivotPoint>()

https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-typetemplates
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-reference/v5/#type_map
https://www.tradingview.com/pine-script-reference/v5/#type_matrix
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-typetemplates
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#id4
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#pageoperators-reassignmentoperator
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#id3

// Detect new pivots (`na` is returned when no pivot is found).
pivotHighPrice = ta.pivothigh(legsInput, legsInput)

// Add a new `pivotPoint` object to the end of the array for each detected
pivot.
if not na(pivotHighPrice)
 // A new pivot is found; create a new object of `pivotPoint` type, setting
its `openTime` and `level` fields.
 newPivot = pivotPoint.new(time[legsInput], pivotHighPrice)
 // Add the new pivot object to the array.
 array.push(pivotHighArray, newPivot)

// On the last historical bar, draw pivot labels and connecting lines.
if barstate.islastconfirmedhistory
 var pivotPoint previousPoint = na
 for eachPivot in pivotHighArray
 // Display a label at the pivot point.
 label.new(eachPivot.openTime, eachPivot.level,
str.tostring(eachPivot.level, format.mintick), xloc.bar_time, textcolor =
color.white)
 // Create a line between pivots.
 if not na(previousPoint)
 // Only create a line starting at the loop's second iteration
because lines connect two pivots.
 line.new(previousPoint.openTime, previousPoint.level,
eachPivot.openTime, eachPivot.level, xloc = xloc.bar_time)
 // Save the pivot for use in the next iteration.
 previousPoint := eachPivot

Copying objects
In Pine, objects are assigned by reference. When an existing object is assigned to a new variable,
both point to the same object.

In the example below, we create a pivot1 object and set its x field to 1000. Then, we declare a
pivot2 variable containing the reference to the pivot1 object, so both point to the same
instance. Changing pivot2.x will thus also change pivot1.x, as both refer to the x field of the
same object:

//@version=5
indicator("")
type pivotPoint
 int x
 float y
pivot1 = pivotPoint.new()
pivot1.x := 1000
pivot2 = pivot1
pivot2.x := 2000
// Both plot the value 2000.
plot(pivot1.x)
plot(pivot2.x)

To create a copy of an object that is independent of the original, we can use the built-in copy()
method in this case.

In this example, we declare the pivot2 variable referring to a copied instance of the pivot1
object. Now, changing pivot2.x will not change pivot1.x, as it refers to the x field of a
separate object:

//@version=5

https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#id5

indicator("")
type pivotPoint
 int x
 float y
pivot1 = pivotPoint.new()
pivot1.x := 1000
pivot2 = pivotPoint.copy(pivot1)
pivot2.x := 2000
// Plots 1000 and 2000.
plot(pivot1.x)
plot(pivot2.x)

It’s important to note that the built-in copy() method produces a shallow copy of an object. If an
object has fields with special types (array, matrix, map, line, linefill, label, box, or table), those
fields in a shallow copy of the object will point to the same instances as the original.

In the following example, we have defined an InfoLabel type with a label as one of its fields.
The script instantiates a shallow copy of the parent object, then calls a user-defined set()
method to update the info and lbl fields of each object. Since the lbl field of both objects
points to the same label instance, changes to this field in either object affect the other:

//@version=5
indicator("Shallow Copy")

type InfoLabel
 string info
 label lbl

method set(InfoLabel this, int x = na, int y = na, string info = na) =>
 if not na(x)
 this.lbl.set_x(x)
 if not na(y)
 this.lbl.set_y(y)
 if not na(info)
 this.info := info
 this.lbl.set_text(this.info)

var parent = InfoLabel.new("", label.new(0, 0))
var shallow = parent.copy()

parent.set(bar_index, 0, "Parent")
shallow.set(bar_index, 1, "Shallow Copy")

To produce a deep copy of an object with all of its special type fields pointing to independent
instances, we must explicitly copy those fields as well.

In this example, we have defined a deepCopy() method that instantiates a new InfoLabel
object with its lbl field pointing to a copy of the original’s field. Changes to the deep copy’s lbl
field will not affect the parent object, as it points to a separate instance:

//@version=5
indicator("Deep Copy")

type InfoLabel
 string info
 label lbl

method set(InfoLabel this, int x = na, int y = na, string info = na) =>
 if not na(x)
 this.lbl.set_x(x)
 if not na(y)
 this.lbl.set_y(y)

https://www.tradingview.com/pine-script-docs/en/v5/language/Methods.html#pagemethods
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_linefill
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_map
https://www.tradingview.com/pine-script-reference/v5/#type_matrix
https://www.tradingview.com/pine-script-reference/v5/#type_array

 if not na(info)
 this.info := info
 this.lbl.set_text(this.info)

method deepCopy(InfoLabel this) =>
 InfoLabel.new(this.info, this.lbl.copy())

var parent = InfoLabel.new("", label.new(0, 0))
var deep = parent.deepCopy()

parent.set(bar_index, 0, "Parent")
deep.set(bar_index, 1, "Deep Copy")

Shadowing
To avoid potential conflicts in the eventuality where namespaces added to Pine Script® in the future
would collide with UDTs or object names in existing scripts; as a rule, UDTs and object names
shadow the language’s namespaces. For example, a UDT or object can use the name of built-in
types, such as line or table.

Only the language’s five primitive types cannot be used to name UDTs or objects: int, float, string,
bool, and color.

Methods
• Introduction
• Built-in methods
• User-defined methods
• Method overloading
• Advanced example

Note

This page contains advanced material. If you are a beginning Pine Script® programmer, we
recommend you become familiar with other, more accessible Pine Script® features before you
venture here.

Introduction
Pine Script® methods are specialized functions associated with specific instances of built-in or user-
defined types. They are essentially the same as regular functions in most regards but offer a shorter,
more convenient syntax. Users can access methods using dot notation on variables directly, just like
accessing the fields of a Pine Script® object.

Built-in methods
Pine Script® includes built-in methods for array, matrix, map, line, linefill, label, box, and table
types. These methods provide users with a more concise way to call specialized routines for these
types within their scripts.

When using these special types, the expressions

<namespace>.<functionName>([paramName =] <objectName>, …)

https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_linefill
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_map
https://www.tradingview.com/pine-script-reference/v5/#type_matrix
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-docs/en/v5/language/Methods.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#pageobjects
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem
https://www.tradingview.com/pine-script-docs/en/v5/language/Methods.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/language/Methods.html#advanced-example
https://www.tradingview.com/pine-script-docs/en/v5/language/Methods.html#method-overloading
https://www.tradingview.com/pine-script-docs/en/v5/language/Methods.html#user-defined-methods
https://www.tradingview.com/pine-script-docs/en/v5/language/Methods.html#built-in-methods
https://www.tradingview.com/pine-script-docs/en/v5/language/Methods.html#introduction
https://www.tradingview.com/pine-script-reference/v5/#op_color
https://www.tradingview.com/pine-script-reference/v5/#op_bool
https://www.tradingview.com/pine-script-reference/v5/#op_string
https://www.tradingview.com/pine-script-reference/v5/#op_float
https://www.tradingview.com/pine-script-reference/v5/#op_int
https://www.tradingview.com/pine-script-reference/v5/#op_table
https://www.tradingview.com/pine-script-reference/v5/#op_line
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#id6

and

<objectName>.<functionName>(…)

are equivalent. For example, rather than using

array.get(id, index)

to get the value from an array id at the specified index, we can simply use

id.get(index)

to achieve the same effect. This notation eliminates the need for users to reference the function’s
namespace, as get() is a method of id in this context.

Written below is a practical example to demonstrate the usage of built-in methods in place of
functions.

The following script computes Bollinger Bands over a specified number of prices sampled once
every n bars. It calls array.push() and array.shift() to queue sourceInput values through the
sourceArray, then array.avg() and array.stdev() to compute the sampleMean and
sampleDev. The script then uses these values to calculate the highBand and lowBand, which
it plots on the chart along with the sampleMean:

//@version=5
indicator("Custom Sample BB", overlay = true)

float sourceInput = input.source(close, "Source")
int samplesInput = input.int(20, "Samples")
int n = input.int(10, "Bars")
float multiplier = input.float(2.0, "StdDev")

var array<float> sourceArray = array.new<float>(samplesInput)
var float sampleMean = na
var float sampleDev = na

// Identify if `n` bars have passed.
if bar_index % n == 0
 // Update the queue.
 array.push(sourceArray, sourceInput)
 array.shift(sourceArray)
 // Update the mean and standard deviaiton values.
 sampleMean := array.avg(sourceArray)
 sampleDev := array.stdev(sourceArray) * multiplier

// Calculate bands.
float highBand = sampleMean + sampleDev
float lowBand = sampleMean - sampleDev

plot(sampleMean, "Basis", color.orange)
plot(highBand, "Upper", color.lime)
plot(lowBand, "Lower", color.red)

Let’s rewrite this code to utilize methods rather than built-in functions. In this version, we have
replaced all built-in array.* functions in the script with equivalent methods:

//@version=5
indicator("Custom Sample BB", overlay = true)

https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dstdev
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Davg
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dshift
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dpush
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dget

float sourceInput = input.source(close, "Source")
int samplesInput = input.int(20, "Samples")
int n = input.int(10, "Bars")
float multiplier = input.float(2.0, "StdDev")

var array<float> sourceArray = array.new<float>(samplesInput)
var float sampleMean = na
var float sampleDev = na

// Identify if `n` bars have passed.
if bar_index % n == 0
 // Update the queue.
 sourceArray.push(sourceInput)
 sourceArray.shift()
 // Update the mean and standard deviaiton values.
 sampleMean := sourceArray.avg()
 sampleDev := sourceArray.stdev() * multiplier

// Calculate band values.
float highBand = sampleMean + sampleDev
float lowBand = sampleMean - sampleDev

plot(sampleMean, "Basis", color.orange)
plot(highBand, "Upper", color.lime)
plot(lowBand, "Lower", color.red)

Note that:
• We call the array methods using sourceArray.* rather than referencing the array

namespace.
• We do not include sourceArray as a parameter when we call the methods since

they already reference the object.

User-defined methods
Pine Script® allows users to define custom methods for use with objects of any built-in or user-
defined type. Defining a method is essentially the same as defining a function, but with two key
differences:

• The method keyword must be included before the function name.
• The type of the first parameter in the signature must be explicitly declared, as it represents

the type of object that the method will be associated with.

[export] method <functionName>(<paramType> <paramName> [= <defaultValue>], …) =>
 <functionBlock>

Let’s apply user-defined methods to our previous Bollinger Bands example to encapsulate
operations from the global scope, which will simplify the code and promote reusability. See this
portion from the example:

// Identify if `n` bars have passed.
if bar_index % n == 0
 // Update the queue.
 sourceArray.push(sourceInput)
 sourceArray.shift()
 // Update the mean and standard deviaiton values.
 sampleMean := sourceArray.avg()
 sampleDev := sourceArray.stdev() * multiplier

// Calculate band values.

https://www.tradingview.com/pine-script-reference/v5/#op_method
https://www.tradingview.com/pine-script-docs/en/v5/language/Methods.html#id3
https://www.tradingview.com/pine-script-reference/v5/#op_array

float highBand = sampleMean + sampleDev
float lowBand = sampleMean - sampleDev

We will start by defining a simple method to queue values through an array in a single call.

This maintainQueue() method invokes the push() and shift() methods on a srcArray when
takeSample is true and returns the object:

// @function Maintains a queue of the size of `srcArray`.
// It appends a `value` to the array and removes its oldest
element at position zero.
// @param srcArray (array<float>) The array where the queue is maintained.
// @param value (float) The new value to be added to the queue.
// The queue's oldest value is also removed, so its size is
constant.
// @param takeSample (bool) A new `value` is only pushed into the queue if this
is true.
// @returns (array<float>) `srcArray` object.
method maintainQueue(array<float> srcArray, float value, bool takeSample = true)
=>
 if takeSample
 srcArray.push(value)
 srcArray.shift()
 srcArray

Note that:
• Just as with user-defined functions, we use the @function compiler annotation to

document method descriptions.

Now we can replace sourceArray.push() and sourceArray.shift() with
sourceArray.maintainQueue() in our example:

// Identify if `n` bars have passed.
if bar_index % n == 0
 // Update the queue.
 sourceArray.maintainQueue(sourceInput)
 // Update the mean and standard deviaiton values.
 sampleMean := sourceArray.avg()
 sampleDev := sourceArray.stdev() * multiplier

// Calculate band values.
float highBand = sampleMean + sampleDev
float lowBand = sampleMean - sampleDev

From here, we will further simplify our code by defining a method that handles all Bollinger Band
calculations within its scope.

This calcBB() method invokes the avg() and stdev() methods on a srcArray to update mean
and dev values when calculate is true. The method uses these values to return a tuple
containing the basis, upper band, and lower band values respectively:

// @function Computes Bollinger Band values from an array of data.
// @param srcArray (array<float>) The array where the queue is maintained.
// @param multiplier (float) Standard deviaiton multiplier.
// @param calcuate (bool) The method will only calculate new values when this
is true.
// @returns A tuple containing the basis, upper band, and lower band
respectively.
method calcBB(array<float> srcArray, float mult, bool calculate = true) =>
 var float mean = na
 var float dev = na
 if calculate

https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dstdev
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Davg
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#pagescriptstructure-compilerannotations
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dshift
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dpush

 // Compute the mean and standard deviation of the array.
 mean := srcArray.avg()
 dev := srcArray.stdev() * mult
 [mean, mean + dev, mean - dev]

With this method, we can now remove Bollinger Band calculations from the global scope and
improve code readability:

// Identify if `n` bars have passed.
bool newSample = bar_index % n == 0

// Update the queue and compute new BB values on each new sample.
[sampleMean, highBand, lowBand] = sourceArray.maintainQueue(sourceInput,
newSample).calcBB(multiplier, newSample)

Note that:
• Rather than using an if block in the global scope, we have defined a newSample

variable that is only true once every n bars. The maintainQueue() and
calcBB() methods use this value for their respective takeSample and
calculate parameters.

• Since the maintainQueue() method returns the object that it references, we’re
able to call calcBB() from the same line of code, as both methods apply to
array<float> instances.

Here is how the full script example looks now that we’ve applied our user-defined methods:

//@version=5
indicator("Custom Sample BB", overlay = true)

float sourceInput = input.source(close, "Source")
int samplesInput = input.int(20, "Samples")
int n = input.int(10, "Bars")
float multiplier = input.float(2.0, "StdDev")

var array<float> sourceArray = array.new<float>(samplesInput)

// @function Maintains a queue of the size of `srcArray`.
// It appends a `value` to the array and removes its oldest
element at position zero.
// @param srcArray (array<float>) The array where the queue is maintained.
// @param value (float) The new value to be added to the queue.
// The queue's oldest value is also removed, so its size is
constant.
// @param takeSample (bool) A new `value` is only pushed into the queue if this
is true.
// @returns (array<float>) `srcArray` object.
method maintainQueue(array<float> srcArray, float value, bool takeSample = true)
=>
 if takeSample
 srcArray.push(value)
 srcArray.shift()
 srcArray

// @function Computes Bollinger Band values from an array of data.
// @param srcArray (array<float>) The array where the queue is maintained.
// @param multiplier (float) Standard deviaiton multiplier.
// @param calcuate (bool) The method will only calculate new values when this
is true.
// @returns A tuple containing the basis, upper band, and lower band
respectively.
method calcBB(array<float> srcArray, float mult, bool calculate = true) =>

 var float mean = na
 var float dev = na
 if calculate
 // Compute the mean and standard deviation of the array.
 mean := srcArray.avg()
 dev := srcArray.stdev() * mult
 [mean, mean + dev, mean - dev]

// Identify if `n` bars have passed.
bool newSample = bar_index % n == 0

// Update the queue and compute new BB values on each new sample.
[sampleMean, highBand, lowBand] = sourceArray.maintainQueue(sourceInput,
newSample).calcBB(multiplier, newSample)

plot(sampleMean, "Basis", color.orange)
plot(highBand, "Upper", color.lime)
plot(lowBand, "Lower", color.red)

Method overloading
User-defined methods can override and overload existing built-in and user-defined methods with
the same identifier. This capability allows users to define multiple routines associated with different
parameter signatures under the same method name.

As a simple example, suppose we want to define a method to identify a variable’s type. Since we
must explicitly specify the type of object associated with a user-defined method, we will need to
define overloads for each type that we want it to recognize.

Below, we have defined a getType() method that returns a string representation of a variable’s
type with overloads for the five primitive types:

// @function Identifies an object's type.
// @param this Object to inspect.
// @returns (string) A string representation of the type.
method getType(int this) =>
 na(this) ? "int(na)" : "int"

method getType(float this) =>
 na(this) ? "float(na)" : "float"

method getType(bool this) =>
 na(this) ? "bool(na)" : "bool"

method getType(color this) =>
 na(this) ? "color(na)" : "color"

method getType(string this) =>
 na(this) ? "string(na)" : "string"

Now we can use these overloads to inspect some variables. This script uses str.format() to format
the results from calling the getType() method on five different variables into a single results
string, then displays the string in the lbl label using the built-in set_text() method:

//@version=5
indicator("Type Inspection")

// @function Identifies an object's type.

https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_text
https://www.tradingview.com/pine-script-reference/v5/#fun_str%7Bdot%7Dformat
https://www.tradingview.com/pine-script-docs/en/v5/language/Methods.html#id4

// @param this Object to inspect.
// @returns (string) A string representation of the type.
method getType(int this) =>
 na(this) ? "int(na)" : "int"

method getType(float this) =>
 na(this) ? "float(na)" : "float"

method getType(bool this) =>
 na(this) ? "bool(na)" : "bool"

method getType(color this) =>
 na(this) ? "color(na)" : "color"

method getType(string this) =>
 na(this) ? "string(na)" : "string"

a = 1
b = 1.0
c = true
d = color.white
e = "1"

// Inspect variables and format results.
results = str.format(
 "a: {0}\nb: {1}\nc: {2}\nd: {3}\ne: {4}",
 a.getType(), b.getType(), c.getType(), d.getType(), e.getType()
)

var label lbl = label.new(0, 0)
lbl.set_x(bar_index)
lbl.set_text(results)

Note that:
• The underlying type of each variable determines which overload of getType() the

compiler will use.
• The method will append “(na)” to the output string when a variable is na to demarcate

that it is empty.

Advanced example
Let’s apply what we’ve learned to construct a script that estimates the cumulative distribution of
elements in an array, meaning the fraction of elements in the array that are less than or equal to any
given value.

There are many ways in which we could choose to tackle this objective. For this example, we will
start by defining a method to replace elements of an array, which will help us count the occurrences
of elements within a range of values.

Written below is an overload of the built-in fill() method for array<float> instances. This
overload replaces elements in a srcArray within the range between the lowerBound and
upperBound with an innerValue, and replaces all elements outside the range with an
outerValue:

// @function Replaces elements in a `srcArray` between `lowerBound` and
`upperBound` with an `innerValue`,
// and replaces elements outside the range with an
`outerValue`.
// @param srcArray (array<float>) Array to modify.

https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dfill
https://www.tradingview.com/pine-script-docs/en/v5/language/Methods.html#id5

// @param innerValue (float) Value to replace elements within the range with.
// @param outerValue (float) Value to replace elements outside the range with.
// @param lowerBound (float) Lowest value to replace with `innerValue`.
// @param upperBound (float) Highest value to replace with `innerValue`.
// @returns (array<float>) `srcArray` object.
method fill(array<float> srcArray, float innerValue, float outerValue, float
lowerBound, float upperBound) =>
 for [i, element] in srcArray
 if (element >= lowerBound or na(lowerBound)) and (element <= upperBound
or na(upperBound))
 srcArray.set(i, innerValue)
 else
 srcArray.set(i, outerValue)
 srcArray

With this method, we can filter an array by value ranges to produce an array of occurrences. For
example, the expression

srcArray.copy().fill(1.0, 0.0, min, val)

copies the srcArray object, replaces all elements between min and val with 1.0, then replaces
all elements above val with 0.0. From here, it’s easy to estimate the output of the cumulative
distribution function at the val, as it’s simply the average of the resulting array:

srcArray.copy().fill(1.0, 0.0, min, val).avg()

Note that:
• The compiler will only use this fill() overload instead of the built-in when the user

provides innerValue, outerValue, lowerBound, and upperBound
arguments in the call.

• If either lowerBound or upperBound is na, its value is ignored while filtering the
fill range.

• We are able to call copy(), fill(), and avg() successively on the same line of
code because the first two methods return an array<float> instance.

We can now use this to define a method that will calculate our empirical distribution values. The
following eCDF() method estimates a number of evenly spaced ascending steps from the
cumulative distribution function of a srcArray and pushes the results into a cdfArray:

// @function Estimates the empirical CDF of a `srcArray`.
// @param srcArray (array<float>) Array to calculate on.
// @param steps (int) Number of steps in the estimation.
// @returns (array<float>) Array of estimated CDF ratios.
method eCDF(array<float> srcArray, int steps) =>
 float min = srcArray.min()
 float rng = srcArray.range() / steps
 array<float> cdfArray = array.new<float>()
 // Add averages of `srcArray` filtered by value region to the `cdfArray`.
 float val = min
 for i = 1 to steps
 val += rng
 cdfArray.push(srcArray.copy().fill(1.0, 0.0, min, val).avg())
 cdfArray

Lastly, to ensure that our eCDF() method functions properly for arrays containing small and large
values, we will define a method to normalize our arrays.

This featureScale() method uses array min() and range() methods to produce a rescaled copy
of a srcArray. We will use this to normalize our arrays prior to invoking the eCDF() method:

https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Drange
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dmin

// @function Rescales the elements within a `srcArray` to the interval
[0, 1].
// @param srcArray (array<float>) Array to normalize.
// @returns (array<float>) Normalized copy of the `srcArray`.
method featureScale(array<float> srcArray) =>
 float min = srcArray.min()
 float rng = srcArray.range()
 array<float> scaledArray = array.new<float>()
 // Push normalized `element` values into the `scaledArray`.
 for element in srcArray
 scaledArray.push((element - min) / rng)
 scaledArray

Note that:
• This method does not include special handling for divide by zero conditions. If rng is

0, the value of the array element will be na.

The full example below queues a sourceArray of size length with sourceInput values
using our previous maintainQueue() method, normalizes the array’s elements using the
featureScale() method, then calls the eCDF() method to get an array of estimates for n
evenly spaced steps on the distribution. The script then calls a user-defined makeLabel()
function to display the estimates and prices in a label on the right side of the chart:

//@version=5
indicator("Empirical Distribution", overlay = true)

float sourceInput = input.source(close, "Source")
int length = input.int(20, "Length")
int n = input.int(20, "Steps")

// @function Maintains a queue of the size of `srcArray`.
// It appends a `value` to the array and removes its oldest
element at position zero.
// @param srcArray (array<float>) The array where the queue is maintained.
// @param value (float) The new value to be added to the queue.
// The queue's oldest value is also removed, so its size is
constant.
// @param takeSample (bool) A new `value` is only pushed into the queue if this
is true.
// @returns (array<float>) `srcArray` object.
method maintainQueue(array<float> srcArray, float value, bool takeSample = true)
=>
 if takeSample
 srcArray.push(value)
 srcArray.shift()
 srcArray

// @function Replaces elements in a `srcArray` between `lowerBound` and
`upperBound` with an `innerValue`,
// and replaces elements outside the range with an
`outerValue`.
// @param srcArray (array<float>) Array to modify.
// @param innerValue (float) Value to replace elements within the range with.
// @param outerValue (float) Value to replace elements outside the range with.
// @param lowerBound (float) Lowest value to replace with `innerValue`.
// @param upperBound (float) Highest value to replace with `innerValue`.
// @returns (array<float>) `srcArray` object.
method fill(array<float> srcArray, float innerValue, float outerValue, float

lowerBound, float upperBound) =>
 for [i, element] in srcArray
 if (element >= lowerBound or na(lowerBound)) and (element <= upperBound
or na(upperBound))
 srcArray.set(i, innerValue)
 else
 srcArray.set(i, outerValue)
 srcArray

// @function Estimates the empirical CDF of a `srcArray`.
// @param srcArray (array<float>) Array to calculate on.
// @param steps (int) Number of steps in the estimation.
// @returns (array<float>) Array of estimated CDF ratios.
method eCDF(array<float> srcArray, int steps) =>
 float min = srcArray.min()
 float rng = srcArray.range() / steps
 array<float> cdfArray = array.new<float>()
 // Add averages of `srcArray` filtered by value region to the `cdfArray`.
 float val = min
 for i = 1 to steps
 val += rng
 cdfArray.push(srcArray.copy().fill(1.0, 0.0, min, val).avg())
 cdfArray

// @function Rescales the elements within a `srcArray` to the interval
[0, 1].
// @param srcArray (array<float>) Array to normalize.
// @returns (array<float>) Normalized copy of the `srcArray`.
method featureScale(array<float> srcArray) =>
 float min = srcArray.min()
 float rng = srcArray.range()
 array<float> scaledArray = array.new<float>()
 // Push normalized `element` values into the `scaledArray`.
 for element in srcArray
 scaledArray.push((element - min) / rng)
 scaledArray

// @function Draws a label containing eCDF estimates in the format
"{price}: {percent}%"
// @param srcArray (array<float>) Array of source values.
// @param cdfArray (array<float>) Array of CDF estimates.
// @returns (void)
makeLabel(array<float> srcArray, array<float> cdfArray) =>
 float max = srcArray.max()
 float rng = srcArray.range() / cdfArray.size()
 string results = ""
 var label lbl = label.new(0, 0, "", style = label.style_label_left,
text_font_family = font.family_monospace)
 // Add percentage strings to `results` starting from the `max`.
 cdfArray.reverse()
 for [i, element] in cdfArray
 results += str.format("{0}: {1}%\n", max - i * rng, element * 100)
 // Update `lbl` attributes.
 lbl.set_xy(bar_index + 1, srcArray.avg())
 lbl.set_text(results)

var array<float> sourceArray = array.new<float>(length)

// Add background color for the last `length` bars.
bgcolor(bar_index > last_bar_index - length ? color.new(color.orange, 80) : na)

// Queue `sourceArray`, feature scale, then estimate the distribution over `n`
steps.
array<float> distArray =

sourceArray.maintainQueue(sourceInput).featureScale().eCDF(n)
// Draw label.
makeLabel(sourceArray, distArray)

Arrays
• Introduction
• Declaring arrays

• Using `var` and `varip` keywords
• Reading and writing array elements
• Looping through array elements
• Scope
• History referencing
• Inserting and removing array elements

• Inserting
• Removing
• Using an array as a stack
• Using an array as a queue

• Calculations on arrays
• Manipulating arrays

• Concatenation
• Copying
• Joining
• Sorting
• Reversing
• Slicing

• Searching arrays
• Error handling

• Index xx is out of bounds. Array size is yy
• Cannot call array methods when ID of array is ‘na’
• Array is too large. Maximum size is 100000
• Cannot create an array with a negative size
• Cannot use shift() if array is empty.
• Cannot use pop() if array is empty.
• Index ‘from’ should be less than index ‘to’
• Slice is out of bounds of the parent array

Note

This page contains advanced material. If you are a beginning Pine Script® programmer, we
recommend you become familiar with other, more accessible Pine Script® features before you
venture here.

Introduction
Pine Script® Arrays are one-dimensional collections that can hold multiple value references. Think
of them as a better way to handle cases where one would otherwise need to explicitly declare a set
of similar variables (e.g., price00, price01, price02, …).

All elements within an array must be of the same type, which can be a built-in or a user-defined

https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#slice-is-out-of-bounds-of-the-parent-array
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#index-from-should-be-less-than-index-to
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#cannot-use-pop-if-array-is-empty
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#cannot-use-shift-if-array-is-empty
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#cannot-create-an-array-with-a-negative-size
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#array-is-too-large-maximum-size-is-100000
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#cannot-call-array-methods-when-id-of-array-is-na
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#index-xx-is-out-of-bounds-array-size-is-yy
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#error-handling
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#searching-arrays
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#slicing
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#reversing
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#sorting
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#joining
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#copying
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#concatenation
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#manipulating-arrays
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#calculations-on-arrays
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#using-an-array-as-a-queue
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#using-an-array-as-a-stack
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#removing
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#inserting
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#inserting-and-removing-array-elements
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#history-referencing
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#scope
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#looping-through-array-elements
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#reading-and-writing-array-elements
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#using-var-and-varip-keywords
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#declaring-arrays
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#introduction

type, always of “series” form. Scripts reference arrays using an array ID similar to the IDs of lines,
labels, and other special types. Pine Script® does not use an indexing operator to reference
individual array elements. Instead, functions including array.get() and array.set() read and write the
values of array elements. We can use array values in expressions and functions that allow values of
the “series” form.

Scripts reference the elements of an array using an index, which starts at 0 and extends to the
number of elements in the array minus one. Arrays in Pine Script® can have a dynamic size that
varies across bars, as one can change the number of elements in an array on each iteration of a
script. Scripts can contain multiple array instances. The size of arrays is limited to 100,000
elements.

Note

We will use beginning of an array to designate index 0, and end of an array to designate the array’s
element with the highest index value. We will also extend the meaning of array to include array
IDs, for the sake of brevity.

Declaring arrays
Pine Script® uses the following syntax to declare arrays:

[var/varip][array<type>/<type[]>]<identifier> = <expression>

Where <type> is a type template for the array that declares the type of values it will contain, and
the <expression> returns either an array of the specified type or na.

When declaring a variable as an array, we can use the array keyword followed by a type template.
Alternatively, we can use the type name followed by the [] modifier (not to be confused with the
[] history-referencing operator).

Since Pine always uses type-specific functions to create arrays, the array<type>/type[] part
of the declaration is redundant, except when declaring an array variable assigned to na. Even when
not required, explicitly declaring the array type helps clearly state the intention to readers.

This line of code declares an array variable named prices that points to na. In this case, we must
specify the type to declare that the variable can reference arrays containing “float” values:

array<float> prices = na

We can also write the above example in this form:

float[] prices = na

When declaring an array and the <expression> is not na, use one of the following functions:
array.new<type>(size, initial_value), array.from(), or array.copy(). For
array.new<type>(size, initial_value) functions, the arguments of the size and
initial_value parameters can be “series” to allow dynamic sizing and initialization of array
elements. The following example creates an array containing zero “float” elements, and this time,
the array ID returned by the array.new<float>() function call is assigned to prices:

prices = array.new<float>(0)

Note

The array.* namespace also contains type-specific functions for creating arrays, including
array.new_int(), array.new_float(), array.new_bool(), array.new_color(), array.new_string(),
array.new_line(), array.new_linefill(), array.new_label(), array.new_box() and array.new_table().

https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dnew_table
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dnew_box
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dnew_label
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dnew_linefill
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dnew_line
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dnew_string
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dnew_color
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dnew_bool
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dnew_float
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dnew_int
https://www.tradingview.com/pine-script-reference/v5/#fun_array.new%3Ctype%3E
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dcopy
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dfrom
https://www.tradingview.com/pine-script-reference/v5/#fun_array.new%3Ctype%3E
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-typetemplates
https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-typetemplates
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id2
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dset
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dget
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes

The array.new<type>() function can create an array of any type, including user-defined types.

The initial_value parameter of array.new* functions allows users to set all elements in
the array to a specified value. If no argument is provided for initial_value, the array is filled
with na values.

This line declares an array ID named prices pointing to an array containing two elements, each
assigned to the bar’s close value:

prices = array.new<float>(2, close)

To create an array and initialize its elements with different values, use array.from(). This function
infers the array’s size and the type of elements it will hold from the arguments in the function call.
As with array.new* functions, it accepts “series” arguments. All values supplied to the function
must be of the same type.

For example, all three of these lines of code will create identical “bool” arrays with the same two
elements:

statesArray = array.from(close > open, high != close)
bool[] statesArray = array.from(close > open, high != close)
array<bool> statesArray = array.from(close > open, high != close)

Using `var` and `varip` keywords

Users can utilize var and varip keywords to instruct a script to declare an array variable only once
on the first iteration of the script on the first chart bar. Array variables declared using these
keywords point to the same array instances until explicitly reassigned, allowing an array and its
element references to persist across bars.

When declaring an array variable using these keywords and pushing a new value to the end of the
referenced array on each bar, the array will grow by one on each bar and be of size bar_index +
1 (bar_index starts at zero) by the time the script executes on the last bar, as this code demonstrates:

//@version=5
indicator("Using `var`")
//@variable An array that expands its size by 1 on each bar.
var a = array.new<float>(0)
array.push(a, close)

if barstate.islast
 //@variable A string containing the size of `a` and the current `bar_index`
value.
 string labelText = "Array size: " + str.tostring(a.size()) + "\nbar_index: "
+ str.tostring(bar_index)
 // Display the `labelText`.
 label.new(bar_index, 0, labelText, size = size.large)

The same code without the var keyword would re-declare the array on each bar. In this case, after
execution of the array.push() call, the a.size() call would return a value of 1.

Note

Array variables declared using varip behave as ones using var on historical data, but they update
their values for realtime bars (i.e., the bars since the script’s last compilation) on each new price
tick. Arrays assigned to varip variables can only hold int, float, bool, color, or string types or user-
defined types that exclusively contain within their fields these types or collections (arrays, matrices,
or maps) of these types.

https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#type_color
https://www.tradingview.com/pine-script-reference/v5/#type_bool
https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#type_int
https://www.tradingview.com/pine-script-reference/v5/#kw_varip
https://www.tradingview.com/pine-script-reference/v5/#kw_var
https://www.tradingview.com/pine-script-reference/v5/#kw_varip
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dsize
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dpush
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id3
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dfrom
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-reference/v5/#fun_array.new%3Ctype%3E

Reading and writing array elements
Scripts can write values to existing individual array elements using array.set(id, index, value), and
read using array.get(id, index). When using these functions, it is imperative that the index in the
function call is always less than or equal to the array’s size (because array indices start at zero). To
get the size of an array, use the array.size(id) function.

The following example uses the set() method to populate a fillColors array with instances of
one base color using different transparency levels. It then uses array.get() to retrieve one of the
colors from the array based on the location of the bar with the highest price within the last
lookbackInput bars:

//@version=5
indicator("Distance from high", "", true)
lookbackInput = input.int(100)
FILL_COLOR = color.green
// Declare array and set its values on the first bar only.
var fillColors = array.new<color>(5)
if barstate.isfirst
 // Initialize the array elements with progressively lighter shades of the
fill color.
 fillColors.set(0, color.new(FILL_COLOR, 70))
 fillColors.set(1, color.new(FILL_COLOR, 75))
 fillColors.set(2, color.new(FILL_COLOR, 80))
 fillColors.set(3, color.new(FILL_COLOR, 85))
 fillColors.set(4, color.new(FILL_COLOR, 90))

// Find the offset to highest high. Change its sign because the function returns
a negative value.
lastHiBar = - ta.highestbars(high, lookbackInput)
// Convert the offset to an array index, capping it to 4 to avoid a runtime
error.
// The index used by `array.get()` will be the equivalent of `floor(fillNo)`.
fillNo = math.min(lastHiBar / (lookbackInput / 5), 4)
// Set background to a progressively lighter fill with increasing distance from
location of highest high.
bgcolor(array.get(fillColors, fillNo))
// Plot key values to the Data Window for debugging.
plotchar(lastHiBar, "lastHiBar", "", location.top, size = size.tiny)
plotchar(fillNo, "fillNo", "", location.top, size = size.tiny)

Another technique for initializing the elements in an array is to create an empty array (an array with
no elements), then use array.push() to append new elements to the end of the array, increasing the
size of the array by one on each call. The following code is functionally identical to the
initialization section from the preceding script:

// Declare array and set its values on the first bar only.
var fillColors = array.new<color>(0)
if barstate.isfirst
 // Initialize the array elements with progressively lighter shades of the
fill color.
 array.push(fillColors, color.new(FILL_COLOR, 70))
 array.push(fillColors, color.new(FILL_COLOR, 75))
 array.push(fillColors, color.new(FILL_COLOR, 80))
 array.push(fillColors, color.new(FILL_COLOR, 85))
 array.push(fillColors, color.new(FILL_COLOR, 90))

This code is equivalent to the one above, but it uses array.unshift() to insert new elements at the

https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dunshift
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dpush
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dget
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dset
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dsize
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dget
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dset
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id4

beginning of the fillColors array:

// Declare array and set its values on the first bar only.
var fillColors = array.new<color>(0)
if barstate.isfirst
 // Initialize the array elements with progressively lighter shades of the
fill color.
 array.unshift(fillColors, color.new(FILL_COLOR, 90))
 array.unshift(fillColors, color.new(FILL_COLOR, 85))
 array.unshift(fillColors, color.new(FILL_COLOR, 80))
 array.unshift(fillColors, color.new(FILL_COLOR, 75))
 array.unshift(fillColors, color.new(FILL_COLOR, 70))

We can also use array.from() to create the same fillColors array with a single function call:

 //@version=5
 indicator("Using `var`")
 FILL_COLOR = color.green
 var color[] fillColors = array.from(
 color.new(FILL_COLOR, 70),
 color.new(FILL_COLOR, 75),
 color.new(FILL_COLOR, 80),
 color.new(FILL_COLOR, 85),
 color.new(FILL_COLOR, 90)
)
 // Cycle background through the array's colors.
 bgcolor(array.get(fillColors, bar_index % (fillColors.size())))

The array.fill(id, value, index_from, index_to) function points all array elements, or the elements
within the index_from to index_to range, to a specified value. Without the last two optional
parameters, the function fills the whole array, so:

a = array.new<float>(10, close)

and:

a = array.new<float>(10)
a.fill(close)

are equivalent, but:

a = array.new<float>(10)
a.fill(close, 1, 3)

only fills the second and third elements (at index 1 and 2) of the array with close. Note how
array.fill()’s last parameter, index_to, must be one greater than the last index the function will
fill. The remaining elements will hold na values, as the array.new() function call does not contain
an initial_value argument.

Looping through array elements
When looping through an array’s element indices and the array’s size is unknown, one can use the
array.size() function to get the maximum index value. For example:

//@version=5
indicator("Protected `for` loop", overlay = true)
//@variable An array of `close` prices from the 1-minute timeframe.
array<float> a = request.security_lower_tf(syminfo.tickerid, "1", close)

//@variable A string representation of the elements in `a`.
string labelText = ""

https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dsize
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id5
https://www.tradingview.com/pine-script-reference/v5/#fun_array.new%3Ctype%3E
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dfill
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dfill
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dfrom

for i = 0 to (array.size(a) == 0 ? na : array.size(a) - 1)
 labelText += str.tostring(array.get(a, i)) + "\n"

label.new(bar_index, high, text = labelText)

Note that:
• We use the request.security_lower_tf() function which returns an array of close prices

at the 1 minute timeframe.
• This code example will throw an error if you use it on a chart timeframe smaller than
1 minute.

• for loops do not execute if the to expression is na. Note that the to value is only
evaluated once upon entry.

An alternative method to loop through an array is to use a for…in loop. This approach is a variation
of the standard for loop that can iterate over the value references and indices in an array. Here is an
example of how we can write the code example from above using a for…in loop:

//@version=5
indicator("`for...in` loop", overlay = true)
//@variable An array of `close` prices from the 1-minute timeframe.
array<float> a = request.security_lower_tf(syminfo.tickerid, "1", close)

//@variable A string representation of the elements in `a`.
string labelText = ""
for price in a
 labelText += str.tostring(price) + "\n"

label.new(bar_index, high, text = labelText)

Note that:
• for…in loops can return a tuple containing each index and corresponding element. For

example, for [i, price] in a returns the i index and price value for each
element in a.

A while loop statement can also be used:

//@version=5
indicator("`while` loop", overlay = true)
array<float> a = request.security_lower_tf(syminfo.tickerid, "1", close)

string labelText = ""
int i = 0
while i < array.size(a)
 labelText += str.tostring(array.get(a, i)) + "\n"
 i += 1

label.new(bar_index, high, text = labelText)

Scope
Users can declare arrays within the global scope of a script, as well as the local scopes of functions,
methods, and conditional structures. Unlike some of the other built-in types, namely fundamental
types, scripts can modify globally-assigned arrays from within local scopes, allowing users to
implement global variables that any function in the script can directly interact with. We use the
functionality here to calculate progressively lower or higher price levels:

https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#pageconditionalstructures
https://www.tradingview.com/pine-script-docs/en/v5/language/Methods.html#pagemethods
https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#pageuserdefinedfunctions
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id6
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#op_for%7Bdot%7D%7Bdot%7D%7Bdot%7Din
https://www.tradingview.com/pine-script-reference/v5/#op_for%7Bdot%7D%7Bdot%7D%7Bdot%7Din
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity_lower_tf

 //@version=5
 indicator("Bands", "", true)
//@variable The distance ratio between plotted price levels.
 factorInput = 1 + (input.float(-2., "Step %") / 100)
//@variable A single-value array holding the lowest `ohlc4` value within a 50
bar window from 10 bars back.
 level = array.new<float>(1, ta.lowest(ohlc4, 50)[10])

 nextLevel(val) =>
 newLevel = level.get(0) * val
 // Write new level to the global `level` array so we can use it as the
base in the next function call.
 level.set(0, newLevel)
 newLevel

 plot(nextLevel(1))
 plot(nextLevel(factorInput))
 plot(nextLevel(factorInput))
 plot(nextLevel(factorInput))

History referencing
Pine Script®’s history-referencing operator [] can access the history of array variables, allowing
scripts to interact with past array instances previously assigned to a variable.

To illustrate this, let’s create a simple example to show how one can fetch the previous bar’s close
value in two equivalent ways. This script uses the [] operator to get the array instance assigned to a
on the previous bar, then uses the get() method to retrieve the value of the first element
(previousClose1). For previousClose2, we use the history-referencing operator on the
close variable directly to retrieve the value. As we see from the plots, previousClose1 and
previousClose2 both return the same value:

//@version=5
indicator("History referencing")

//@variable A single-value array declared on each bar.
a = array.new<float>(1)
// Set the value of the only element in `a` to `close`.
array.set(a, 0, close)

//@variable The array instance assigned to `a` on the previous bar.
previous = a[1]

previousClose1 = na(previous) ? na : previous.get(0)
previousClose2 = close[1]

plot(previousClose1, "previousClose1", color.gray, 6)
plot(previousClose2, "previousClose2", color.white, 2)

Inserting and removing array elements

https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id8
https://www.tradingview.com/pine-script-reference/v5/#fun_array.get
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id7

Inserting

The following three functions can insert new elements into an array.

array.unshift() inserts a new element at the beginning of an array (index 0) and increases the index
values of any existing elements by one.

array.insert() inserts a new element at the specified index and increases the index of existing
elements at or after the index by one.

//@version=5
indicator("`array.insert()`")
a = array.new<float>(5, 0)
for i = 0 to 4
 array.set(a, i, i + 1)
if barstate.islast
 label.new(bar_index, 0, "BEFORE\na: " + str.tostring(a), size = size.large)
 array.insert(a, 2, 999)
 label.new(bar_index, 0, "AFTER\na: " + str.tostring(a), style =
label.style_label_up, size = size.large)

array.push() adds a new element at the end of an array.

Removing

These four functions remove elements from an array. The first three also return the value of the
removed element.

array.remove() removes the element at the specified index and returns that element’s value.

array.shift() removes the first element from an array and returns its value.

array.pop() removes the last element of an array and returns its value.

array.clear() removes all elements from an array. Note that clearing an array won’t delete any
objects its elements referenced. See the example below that illustrates how this works:

//@version=5
indicator("`array.clear()` example", overlay = true)

// Create a label array and add a label to the array on each new bar.
var a = array.new<label>()
label lbl = label.new(bar_index, high, "Text", color = color.red)
array.push(a, lbl)

var table t = table.new(position.top_right, 1, 1)
// Clear the array on the last bar. This doesn't remove the labels from the
chart.
if barstate.islast
 array.clear(a)
 table.cell(t, 0, 0, "Array elements count: " + str.tostring(array.size(a)),
bgcolor = color.yellow)

Using an array as a stack

Stacks are LIFO (last in, first out) constructions. They behave somewhat like a vertical pile of
books to which books can only be added or removed one at a time, always from the top. Pine
Script® arrays can be used as a stack, in which case we use the array.push() and array.pop()

https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dpop
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dpush
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id11
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dclear
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dpop
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dshift
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dremove
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id10
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dpush
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dinsert
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dunshift
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id9

functions to add and remove elements at the end of the array.

array.push(prices, close) will add a new element to the end of the prices array,
increasing the array’s size by one.

array.pop(prices) will remove the end element from the prices array, return its value and
decrease the array’s size by one.

See how the functions are used here to track successive lows in rallies:

//@version=5
indicator("Lows from new highs", "", true)
var lows = array.new<float>(0)
flushLows = false

// Remove last element from the stack when `_cond` is true.
array_pop(id, cond) => cond and array.size(id) > 0 ? array.pop(id) : float(na)

if ta.rising(high, 1)
 // Rising highs; push a new low on the stack.
 lows.push(low)
 // Force the return type of this `if` block to be the same as that of the
next block.
 bool(na)
else if lows.size() >= 4 or low < array.min(lows)
 // We have at least 4 lows or price has breached the lowest low;
 // sort lows and set flag indicating we will plot and flush the levels.
 array.sort(lows, order.ascending)
 flushLows := true

// If needed, plot and flush lows.
lowLevel = array_pop(lows, flushLows)
plot(lowLevel, "Low 1", low > lowLevel ? color.silver : color.purple, 2,
plot.style_linebr)
lowLevel := array_pop(lows, flushLows)
plot(lowLevel, "Low 2", low > lowLevel ? color.silver : color.purple, 3,
plot.style_linebr)
lowLevel := array_pop(lows, flushLows)
plot(lowLevel, "Low 3", low > lowLevel ? color.silver : color.purple, 4,
plot.style_linebr)
lowLevel := array_pop(lows, flushLows)
plot(lowLevel, "Low 4", low > lowLevel ? color.silver : color.purple, 5,
plot.style_linebr)

if flushLows
 // Clear remaining levels after the last 4 have been plotted.
 lows.clear()

Using an array as a queue

Queues are FIFO (first in, first out) constructions. They behave somewhat like cars arriving at a red
light. New cars are queued at the end of the line, and the first car to leave will be the first one that
arrived to the red light.

In the following code example, we let users decide through the script’s inputs how many labels they
want to have on their chart. We use that quantity to determine the size of the array of labels we then
create, initializing the array’s elements to na.

When a new pivot is detected, we create a label for it, saving the label’s ID in the pLabel variable.

https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id12

We then queue the ID of that label by using array.push() to append the new label’s ID to the end of
the array, making our array size one greater than the maximum number of labels to keep on the
chart.

Lastly, we de-queue the oldest label by removing the array’s first element using array.shift() and
deleting the label referenced by that array element’s value. As we have now de-queued an element
from our queue, the array contains pivotCountInput elements once again. Note that on the
dataset’s first bars we will be deleting na label IDs until the maximum number of labels has been
created, but this does not cause runtime errors. Let’s look at our code:

//@version=5
MAX_LABELS = 100
indicator("Show Last n High Pivots", "", true, max_labels_count = MAX_LABELS)

pivotCountInput = input.int(5, "How many pivots to show", minval = 0, maxval =
MAX_LABELS)
pivotLegsInput = input.int(3, "Pivot legs", minval = 1, maxval = 5)

// Create an array containing the user-selected max count of label IDs.
var labelIds = array.new<label>(pivotCountInput)

pHi = ta.pivothigh(pivotLegsInput, pivotLegsInput)
if not na(pHi)
 // New pivot found; plot its label `i_pivotLegs` bars back.
 pLabel = label.new(bar_index[pivotLegsInput], pHi, str.tostring(pHi,
format.mintick), textcolor = color.white)
 // Queue the new label's ID by appending it to the end of the array.
 array.push(labelIds, pLabel)
 // De-queue the oldest label ID from the queue and delete the corresponding
label.
 label.delete(array.shift(labelIds))

Calculations on arrays
While series variables can be viewed as a horizontal set of values stretching back in time, Pine
Script®’s one-dimensional arrays can be viewed as vertical structures residing on each bar. As an
array’s set of elements is not a time series, Pine Script®’s usual mathematical functions are not
allowed on them. Special-purpose functions must be used to operate on all of an array’s values. The
available functions are: array.abs(), array.avg(), array.covariance(), array.min(), array.max(),
array.median(), array.mode(), array.percentile_linear_interpolation(),
array.percentile_nearest_rank(), array.percentrank(), array.range(), array.standardize(), array.stdev(),
array.sum(), array.variance().

Note that contrary to the usual mathematical functions in Pine Script®, those used on arrays do not
return na when some of the values they calculate on have na values. There are a few exceptions to
this rule:

• When all array elements have na value or the array contains no elements, na is returned.
array.standardize() however, will return an empty array.

• array.mode() will return na when no mode is found.

Manipulating arrays

https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id14
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dvariance
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dsum
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dstdev
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dstandardize
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Drange
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dpercentrank
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dpercentile_nearest_rank
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dpercentile_linear_interpolation
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dmode
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dmedian
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dmax
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dmin
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dcovariance
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Davg
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dabs
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id13
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dshift
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dpush

Concatenation

Two arrays can be merged—or concatenated—using array.concat(). When arrays are concatenated,
the second array is appended to the end of the first, so the first array is modified while the second
one remains intact. The function returns the array ID of the first array:

//@version=5
indicator("`array.concat()`")
a = array.new<float>(0)
b = array.new<float>(0)
array.push(a, 0)
array.push(a, 1)
array.push(b, 2)
array.push(b, 3)
if barstate.islast
 label.new(bar_index, 0, "BEFORE\na: " + str.tostring(a) + "\nb: " +
str.tostring(b), size = size.large)
 c = array.concat(a, b)
 array.push(c, 4)
 label.new(bar_index, 0, "AFTER\na: " + str.tostring(a) + "\nb: " +
str.tostring(b) + "\nc: " + str.tostring(c), style = label.style_label_up, size
= size.large)

Copying

You can copy an array using array.copy(). Here we copy the array a to a new array named _b:

//@version=5
indicator("`array.copy()`")
a = array.new<float>(0)
array.push(a, 0)
array.push(a, 1)
if barstate.islast
 b = array.copy(a)
 array.push(b, 2)
 label.new(bar_index, 0, "a: " + str.tostring(a) + "\nb: " + str.tostring(b),
size = size.large)

Note that simply using _b = a in the previous example would not have copied the array, but only
its ID. From thereon, both variables would point to the same array, so using either one would affect
the same array.

Joining

Use array.join() to concatenate all of the elements in the array into a string and separate these
elements with the specified separator:

//@version=5
indicator("")
v1 = array.new<string>(10, "test")
v2 = array.new<string>(10, "test")
array.push(v2, "test1")
v3 = array.new_float(5, 5)
v4 = array.new_int(5, 5)

https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Djoin
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id17
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dcopy
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id16
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dconcat
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id15

l1 = label.new(bar_index, close, array.join(v1))
l2 = label.new(bar_index, close, array.join(v2, ","))
l3 = label.new(bar_index, close, array.join(v3, ","))
l4 = label.new(bar_index, close, array.join(v4, ","))

Sorting

Arrays containing “int” or “float” elements can be sorted in either ascending or descending order
using array.sort(). The order parameter is optional and defaults to order.ascending. As all
array.*() function arguments, it is of form “series”, so can be determined at runtime, as is done
here. Note that in the example, which array is sorted is also determined at runtime:

//@version=5
indicator("`array.sort()`")
a = array.new<float>(0)
b = array.new<float>(0)
array.push(a, 2)
array.push(a, 0)
array.push(a, 1)
array.push(b, 4)
array.push(b, 3)
array.push(b, 5)
if barstate.islast
 barUp = close > open
 array.sort(barUp ? a : b, barUp ? order.ascending : order.descending)
 label.new(bar_index, 0,
 "a " + (barUp ? "is sorted ▲: " : "is not sorted: ") + str.tostring(a) +
"\n\n" +
 "b " + (barUp ? "is not sorted: " : "is sorted ▼: ") + str.tostring(b),
size = size.large)

Another useful option for sorting arrays is to use the array.sort_indices() function, which takes a
reference to the original array and returns an array containing the indices from the original array.
Please note that this function won’t modify the original array. The order parameter is optional and
defaults to order.ascending.

Reversing

Use array.reverse() to reverse an array:

//@version=5
indicator("`array.reverse()`")
a = array.new<float>(0)
array.push(a, 0)
array.push(a, 1)
array.push(a, 2)
if barstate.islast
 array.reverse(a)
 label.new(bar_index, 0, "a: " + str.tostring(a))

Slicing

Slicing an array using array.slice() creates a shallow copy of a subset of the parent array. You
determine the size of the subset to slice using the index_from and index_to parameters. The
index_to argument must be one greater than the end of the subset you want to slice.

https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dslice
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id20
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dreverse
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id19
https://www.tradingview.com/pine-script-reference/v5/#var_order%7Bdot%7Dascending
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dsort_indices
https://www.tradingview.com/pine-script-reference/v5/#var_order%7Bdot%7Dascending
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dsort
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id18

The shallow copy created by the slice acts like a window on the parent array’s content. The indices
used for the slice define the window’s position and size over the parent array. If, as in the example
below, a slice is created from the first three elements of an array (indices 0 to 2), then regardless of
changes made to the parent array, and as long as it contains at least three elements, the shallow copy
will always contain the parent array’s first three elements.

Additionally, once the shallow copy is created, operations on the copy are mirrored on the parent
array. Adding an element to the end of the shallow copy, as is done in the following example, will
widen the window by one element and also insert that element in the parent array at index 3. In this
example, to slice the subset from index 0 to index 2 of array a, we must use _sliceOfA =
array.slice(a, 0, 3):

//@version=5
indicator("`array.slice()`")
a = array.new<float>(0)
array.push(a, 0)
array.push(a, 1)
array.push(a, 2)
array.push(a, 3)
if barstate.islast
 // Create a shadow of elements at index 1 and 2 from array `a`.
 sliceOfA = array.slice(a, 0, 3)
 label.new(bar_index, 0, "BEFORE\na: " + str.tostring(a) + "\nsliceOfA: " +
str.tostring(sliceOfA))
 // Remove first element of parent array `a`.
 array.remove(a, 0)
 // Add a new element at the end of the shallow copy, thus also affecting the
original array `a`.
 array.push(sliceOfA, 4)
 label.new(bar_index, 0, "AFTER\na: " + str.tostring(a) + "\nsliceOfA: " +
str.tostring(sliceOfA), style = label.style_label_up)

Searching arrays
We can test if a value is part of an array with the array.includes() function, which returns true if the
element is found. We can find the first occurrence of a value in an array by using the array.indexof()
function. The first occurence is the one with the lowest index. We can also find the last occurrence
of a value with array.lastindexof():

//@version=5
indicator("Searching in arrays")
valueInput = input.int(1)
a = array.new<float>(0)
array.push(a, 0)
array.push(a, 1)
array.push(a, 2)
array.push(a, 1)
if barstate.islast
 valueFound = array.includes(a, valueInput)
 firstIndexFound = array.indexof(a, valueInput)
 lastIndexFound = array.lastindexof(a, valueInput)
 label.new(bar_index, 0, "a: " + str.tostring(a) +
 "\nFirst " + str.tostring(valueInput) + (firstIndexFound != -1 ? " value
was found at index: " + str.tostring(firstIndexFound) : " value was not found.")
+
 "\nLast " + str.tostring(valueInput) + (lastIndexFound != -1 ? " value
was found at index: " + str.tostring(lastIndexFound) : " value was not found."))

https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dlastindexof
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dindexof
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dincludes
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id21

We can also perform a binary search on an array but note that performing a binary search on an
array means that the array will first need to be sorted in ascending order only. The
array.binary_search() function will return the value’s index if it was found or -1 if it wasn’t. If we
want to always return an existing index from the array even if our chosen value wasn’t found, then
we can use one of the other binary search functions available. The array.binary_search_leftmost()
function, which returns an index if the value was found or the first index to the left where the value
would be found. The array.binary_search_rightmost() function is almost identical and returns an
index if the value was found or the first index to the right where the value would be found.

Error handling
Malformed array.*() call syntax in Pine scripts will cause the usual compiler error messages to

appear in Pine Script® Editor’s console, at the bottom of the window, when you save a script. Refer
to the Pine Script® v5 Reference Manual when in doubt regarding the exact syntax of function calls.

Scripts using arrays can also throw runtime errors, which appear as an exclamation mark next to
the indicator’s name on the chart. We discuss those runtime errors in this section.

Index xx is out of bounds. Array size is yy

This will most probably be the most frequent error you encounter. It will happen when you
reference an nonexistent array index. The “xx” value will be the value of the faulty index you tried
to use, and “yy” will be the size of the array. Recall that array indices start at zero—not one—and
end at the array’s size, minus one. An array of size 3’s last valid index is thus 2.

To avoid this error, you must make provisions in your code logic to prevent using an index lying
outside of the array’s index boundaries. This code will generate the error because the last index we
use in the loop is outside the valid index range for the array:

//@version=5
indicator("Out of bounds index")
a = array.new<float>(3)
for i = 1 to 3
 array.set(a, i, i)
plot(array.pop(a))

The correct for statement is:

for i = 0 to 2

To loop on all array elements in an array of unknown size, use:

//@version=5
indicator("Protected `for` loop")
sizeInput = input.int(0, "Array size", minval = 0, maxval = 100000)
a = array.new<float>(sizeInput)
for i = 0 to (array.size(a) == 0 ? na : array.size(a) - 1)
 array.set(a, i, i)
plot(array.pop(a))

When you size arrays dynamically using a field in your script’s Settings/Inputs tab, protect the
boundaries of that value using input.int()’s minval and maxval parameters:

//@version=5
indicator("Protected array size")
sizeInput = input.int(10, "Array size", minval = 1, maxval = 100000)
a = array.new<float>(sizeInput)
for i = 0 to sizeInput - 1

https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dint
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id23
https://www.tradingview.com/pine-script-reference/v5/
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id22
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dbinary_search_rightmost
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dbinary_search_leftmost
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dbinary_search

 array.set(a, i, i)
plot(array.size(a))

See the Looping section of this page for more information.

Cannot call array methods when ID of array is ‘na’

When an array ID is initialized to na, operations on it are not allowed, since no array exists. All that
exists at that point is an array variable containing the na value rather that a valid array ID pointing
to an existing array. Note that an array created with no elements in it, as you do when you use a =
array.new_int(0), has a valid ID nonetheless. This code will throw the error we are
discussing:

//@version=5
indicator("Out of bounds index")
int[] a = na
array.push(a, 111)
label.new(bar_index, 0, "a: " + str.tostring(a))

To avoid it, create an array with size zero using:

int[] a = array.new_int(0)

or:

a = array.new_int(0)

Array is too large. Maximum size is 100000

This error will appear if your code attempts to declare an array with a size greater than 100,000. It
will also occur if, while dynamically appending elements to an array, a new element would increase
the array’s size past the maximum.

Cannot create an array with a negative size

We haven’t found any use for arrays of negative size yet, but if you ever do, we may allow them :)

Cannot use shift() if array is empty.

This error will occur if array.shift() is called to remove the first element of an empty array.

Cannot use pop() if array is empty.

This error will occur if array.pop() is called to remove the last element of an empty array.

Index ‘from’ should be less than index ‘to’

When two indices are used in functions such as array.slice(), the first index must always be smaller
than the second one.

Slice is out of bounds of the parent array

This message occurs whenever the parent array’s size is modified in such a way that it makes the
shallow copy created by a slice point outside the boundaries of the parent array. This code will
reproduce it because after creating a slice from index 3 to 4 (the last two elements of our five-

https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id30
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dslice
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id29
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dpop
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id28
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dshift
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id27
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id26
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id25
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#id24
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays-looping

element parent array), we remove the parent’s first element, making its size four and its last index 3.
From that moment on, the shallow copy which is still poiting to the “window” at the parent array’s
indices 3 to 4, is pointing out of the parent array’s boundaries:

//@version=5
indicator("Slice out of bounds")
a = array.new<float>(5, 0)
b = array.slice(a, 3, 5)
array.remove(a, 0)
c = array.indexof(b, 2)
plot(c)

Matrices
• Introduction
• Declaring a matrix

• Using `var` and `varip` keywords
• Reading and writing matrix elements

• `matrix.get()` and `matrix.set()`
• `matrix.fill()`

• Rows and columns
• Retrieving
• Inserting
• Removing
• Swapping
• Replacing

• Looping through a matrix
• `for`
• `for…in`

• Copying a matrix
• Shallow copies
• Deep copies
• Submatrices

• Scope and history
• Inspecting a matrix
• Manipulating a matrix

• Reshaping
• Reversing
• Transposing
• Sorting
• Concatenating

• Matrix calculations
• Element-wise calculations
• Special calculations

• `matrix.sum()` and `matrix.diff()`
• `matrix.mult()`
• `matrix.det()`
• `matrix.inv()` and `matrix.pinv()`
• `matrix.rank()`

• Error handling

https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#error-handling
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#matrix-rank
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#matrix-inv-and-matrix-pinv
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#matrix-det
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#matrix-mult
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#matrix-sum-and-matrix-diff
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#special-calculations
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#element-wise-calculations
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#matrix-calculations
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#concatenating
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#sorting
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#transposing
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#reversing
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#reshaping
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#manipulating-a-matrix
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#inspecting-a-matrix
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#scope-and-history
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#submatrices
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#deep-copies
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#shallow-copies
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#copying-a-matrix
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#for-in
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#for
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#looping-through-a-matrix
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#replacing
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#swapping
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#removing
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#inserting
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#retrieving
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#rows-and-columns
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#matrix-fill
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#matrix-get-and-matrix-set
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#reading-and-writing-matrix-elements
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#using-var-and-varip-keywords
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#declaring-a-matrix
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#introduction

• The row/column index (xx) is out of bounds, row/column size is (yy).
• The array size does not match the number of rows/columns in the matrix.
• Cannot call matrix methods when the ID of matrix is ‘na’.
• Matrix is too large. Maximum size of the matrix is 100,000 elements.
• The row/column index must be 0 <= from_row/column < to_row/column.
• Matrices ‘id1’ and ‘id2’ must have an equal number of rows and columns to be

added.
• The number of columns in the ‘id1’ matrix must equal the number of rows in the

matrix (or the number of elements in the array) ‘id2’.
• Operation not available for non-square matrices.

Note

This page contains advanced material. If you are a beginning Pine Script® programmer, we
recommend you become familiar with other, more accessible Pine Script® features before you
venture here.

Introduction
Pine Script® Matrices are collections that store value references in a rectangular format. They are
essentially the equivalent of two-dimensional array objects with functions and methods for
inspection, modification, and specialized calculations. As with arrays, all matrix elements must be
of the same type, which can be a built-in or a user-defined type.

Matrices reference their elements using two indices: one index for their rows and the other for their
columns. Each index starts at 0 and extends to the number of rows/columns in the matrix minus
one. Matrices in Pine can have dynamic numbers of rows and columns that vary across bars. The
total number of elements within a matrix is the product of the number of rows and columns (e.g., a
5x5 matrix has a total of 25). Like arrays, the total number of elements in a matrix cannot exceed
100,000.

Declaring a matrix
Pine Script® uses the following syntax for matrix declaration:

[var/varip][matrix<type>]<identifier> = <expression>

Where <type> is a type template for the matrix that declares the type of values it will contain, and
the <expression> returns either a matrix instance of the type or na.

When declaring a matrix variable as na, users must specify that the identifier will reference
matrices of a specific type by including the matrix keyword followed by a type template.

This line declares a new myMatrix variable with a value of na. It explicitly declares the variable
as matrix<float>, which tells the compiler that the variable can only accept matrix objects
containing float values:

matrix<float> myMatrix = na

When a matrix variable is not assigned to na, the matrix keyword and its type template are
optional, as the compiler will use the type information from the object the variable references.

Here, we declare a myMatrix variable referencing a new matrix<float> instance with two
rows, two columns, and an initial_value of 0. The variable gets its type information from the
new object in this case, so it doesn’t require an explicit type declaration:

https://www.tradingview.com/pine-script-reference/v5/#op_matrix
https://www.tradingview.com/pine-script-reference/v5/#op_float
https://www.tradingview.com/pine-script-reference/v5/#op_matrix
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-typetemplates
https://www.tradingview.com/pine-script-reference/v5/#op_matrix
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-typetemplates
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.columns
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rows
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.elements_count
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-types
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays
https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#operation-not-available-for-non-square-matrices
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#the-number-of-columns-in-the-id1-matrix-must-equal-the-number-of-rows-in-the-matrix-or-the-number-of-elements-in-the-array-id2
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#the-number-of-columns-in-the-id1-matrix-must-equal-the-number-of-rows-in-the-matrix-or-the-number-of-elements-in-the-array-id2
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#matrices-id1-and-id2-must-have-an-equal-number-of-rows-and-columns-to-be-added
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#matrices-id1-and-id2-must-have-an-equal-number-of-rows-and-columns-to-be-added
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#the-row-column-index-must-be-0-from-row-column-to-row-column
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#matrix-is-too-large-maximum-size-of-the-matrix-is-100-000-elements
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#cannot-call-matrix-methods-when-the-id-of-matrix-is-na
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#the-array-size-does-not-match-the-number-of-rows-columns-in-the-matrix
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#the-row-column-index-xx-is-out-of-bounds-row-column-size-is-yy

myMatrix = matrix.new<float>(2, 2, 0.0)

Using `var` and `varip` keywords

As with other variables, users can include the var or varip keywords to instruct a script to declare a
matrix variable only once rather than on every bar. A matrix variable declared with this keyword
will point to the same instance throughout the span of the chart unless the script explicitly assigns
another matrix to it, allowing a matrix and its element references to persist between script iterations.

This script declares an m variable assigned to a matrix that holds a single row of two int elements
using the var keyword. On every 20th bar, the script adds 1 to the first element on the first row of
the m matrix. The plot() call displays this element on the chart. As we see from the plot, the value of
m.get(0, 0) persists between bars, never returning to the initial value of 0:

//@version=5
indicator("var matrix demo")

//@variable A 1x2 rectangular matrix declared only at `bar_index == 0`, i.e.,
the first bar.
var m = matrix.new<int>(1, 2, 0)

//@variable Is `true` on every 20th bar.
bool update = bar_index % 20 == 0

if update
 int currentValue = m.get(0, 0) // Get the current value of the first row and
column.
 m.set(0, 0, currentValue + 1) // Set the first row and column element value
to `currentValue + 1`.

plot(m.get(0, 0), linewidth = 3) // Plot the value from the first row and
column.

Note

Matrix variables declared using varip behave as ones using var on historical data, but they update
their values for realtime bars (i.e., the bars since the script’s last compilation) on each new price
tick. Matrices assigned to varip variables can only hold int, float, bool, color, or string types or user-
defined types that exclusively contain within their fields these types or collections (arrays, matrices,
or maps) of these types.

Reading and writing matrix elements

`matrix.get()` and `matrix.set()`

To retrieve the value from a matrix at a specified row and column index, use matrix.get(). This
function locates the specified matrix element and returns its value. Similarly, to overwrite a specific
element’s value, use matrix.set() to assign the element at the specified row and column to a new
value.

The example below defines a square matrix m with two rows and columns and an
initial_value of 0 for all elements on the first bar. The script adds 1 to each element’s value
on different bars using the m.get() and m.set() methods. It updates the first row’s first value once
every 11 bars, the first row’s second value once every seven bars, the second row’s first value once

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.set
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.get
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.set
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.get
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id4
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#type_color
https://www.tradingview.com/pine-script-reference/v5/#type_bool
https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#type_int
https://www.tradingview.com/pine-script-reference/v5/#kw_varip
https://www.tradingview.com/pine-script-reference/v5/#kw_var
https://www.tradingview.com/pine-script-reference/v5/#kw_varip
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.get
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_int
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id3

every five bars, and the second row’s second value once every three bars. The script plots each
element’s value on the chart:

//@version=5
indicator("Reading and writing elements demo")

//@variable A 2x2 square matrix of `float` values.
var m = matrix.new<float>(2, 2, 0.0)

switch
 bar_index % 11 == 0 => m.set(0, 0, m.get(0, 0) + 1.0) // Adds 1 to the value
at row 0, column 0 every 11th bar.
 bar_index % 7 == 0 => m.set(0, 1, m.get(0, 1) + 1.0) // Adds 1 to the value
at row 0, column 1 every 7th bar.
 bar_index % 5 == 0 => m.set(1, 0, m.get(1, 0) + 1.0) // Adds 1 to the value
at row 1, column 0 every 5th bar.
 bar_index % 3 == 0 => m.set(1, 1, m.get(1, 1) + 1.0) // Adds 1 to the value
at row 1, column 1 every 3rd bar.

plot(m.get(0, 0), "Row 0, Column 0 Value", color.red, 2)
plot(m.get(0, 1), "Row 0, Column 1 Value", color.orange, 2)
plot(m.get(1, 0), "Row 1, Column 0 Value", color.green, 2)
plot(m.get(1, 1), "Row 1, Column 1 Value", color.blue, 2)

`matrix.fill()`

To overwrite all matrix elements with a specific value, use matrix.fill(). This function points all
items in the entire matrix or within the from_row/column and to_row/column index range
to the value specified in the call. For example, this snippet declares a 4x4 square matrix, then fills
its elements with a random value:

myMatrix = matrix.new<float>(4, 4)
myMatrix.fill(math.random())

Note when using matrix.fill() with matrices containing special types (line, linefill, label, box, or
table) or UDTs, all replaced elements will point to the same object passed in the function call.

This script declares a matrix with four rows and columns of label references, which it fills with a
new label object on the first bar. On each bar, the script sets the x attribute of the label referenced at
row 0, column 0 to bar_index, and the text attribute of the one referenced at row 3, column 3 to
the number of labels on the chart. Although the matrix can reference 16 (4x4) labels, each element
points to the same instance, resulting in only one label on the chart that updates its x and text
attributes on each bar:

//@version=5
indicator("Object matrix fill demo")

//@variable A 4x4 label matrix.
var matrix<label> m = matrix.new<label>(4, 4)

// Fill `m` with a new label object on the first bar.
if bar_index == 0
 m.fill(label.new(0, 0, textcolor = color.white, size = size.huge))

https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#op_label
https://www.tradingview.com/pine-script-reference/v5/#op_label
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-reference/v5/#op_table
https://www.tradingview.com/pine-script-reference/v5/#op_box
https://www.tradingview.com/pine-script-reference/v5/#op_label
https://www.tradingview.com/pine-script-reference/v5/#op_linefill
https://www.tradingview.com/pine-script-reference/v5/#op_line
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.fill
https://www.tradingview.com/pine-script-reference/v5/#fun_math.random
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.fill
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id6

//@variable The number of label objects on the chart.
int numLabels = label.all.size()

// Set the `x` of the label from the first row and column to `bar_index`.
m.get(0, 0).set_x(bar_index)
// Set the `text` of the label at the last row and column to the number of
labels.
m.get(3, 3).set_text(str.format("Total labels on the chart: {0}", numLabels))

Rows and columns

Retrieving

Matrices facilitate the retrieval of all values from a specific row or column via the matrix.row() and
matrix.col() functions. These functions return the values as an array object sized according to the
other dimension of the matrix, i.e., the size of a matrix.row() array equals the number of columns
and the size of a matrix.col() array equals the number of rows.

The script below populates a 3x2 m matrix with the values 1 - 6 on the first chart bar. It calls the
m.row() and m.col() methods to access the first row and column arrays from the matrix and displays
them on the chart in a label along with the array sizes:

//@version=5
indicator("Retrieving rows and columns demo")

//@variable A 3x2 rectangular matrix.
var matrix<float> m = matrix.new<float>(3, 2)

if bar_index == 0
 m.set(0, 0, 1.0) // Set row 0, column 0 value to 1.
 m.set(0, 1, 2.0) // Set row 0, column 1 value to 2.
 m.set(1, 0, 3.0) // Set row 1, column 0 value to 3.
 m.set(1, 1, 4.0) // Set row 1, column 1 value to 4.
 m.set(2, 0, 5.0) // Set row 1, column 0 value to 5.
 m.set(2, 1, 6.0) // Set row 1, column 1 value to 6.

//@variable The first row of the matrix.
array<float> row0 = m.row(0)
//@variable The first column of the matrix.
array<float> column0 = m.col(0)

//@variable Displays the first row and column of the matrix and their sizes in a
label.
var label debugLabel = label.new(0, 0, color = color.blue, textcolor =
color.white, size = size.huge)
debugLabel.set_x(bar_index)
debugLabel.set_text(str.format("Row 0: {0}, Size: {1}\nCol 0: {2}, Size: {3}",
row0, m.columns(), column0, m.rows()))

Note that:
• To get the sizes of the arrays displayed in the label, we used the rows() and columns()

methods rather than array.size() to demonstrate that the size of the row0 array equals
the number of columns and the size of the column0 array equals the number of rows.

matrix.row() and matrix.col() copy the references in a row/column to a new array. Modifications to

https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.row
https://www.tradingview.com/pine-script-reference/v5/#fun_array.size
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.columns
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rows
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rows
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.columns
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.row
https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.row
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id8
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id7

the arrays returned by these functions do not directly affect the elements or the shape of a matrix.

Here, we’ve modified the previous script to set the first element of row0 to 10 via the array.set()
method before displaying the label. This script also plots the value from row 0, column 0. As we
see, the label shows that the first element of the row0 array is 10. However, the plot shows that the
corresponding matrix element still has a value of 1:

//@version=5
indicator("Retrieving rows and columns demo")

//@variable A 3x2 rectangular matrix.
var matrix<float> m = matrix.new<float>(3, 2)

if bar_index == 0
 m.set(0, 0, 1.0) // Set row 0, column 0 value to 1.
 m.set(0, 1, 2.0) // Set row 0, column 1 value to 2.
 m.set(1, 0, 3.0) // Set row 1, column 0 value to 3.
 m.set(1, 1, 4.0) // Set row 1, column 1 value to 4.
 m.set(2, 0, 5.0) // Set row 1, column 0 value to 5.
 m.set(2, 1, 6.0) // Set row 1, column 1 value to 6.

//@variable The first row of the matrix.
array<float> row0 = m.row(0)
//@variable The first column of the matrix.
array<float> column0 = m.col(0)

// Set the first `row` element to 10.
row0.set(0, 10)

//@variable Displays the first row and column of the matrix and their sizes in a
label.
var label debugLabel = label.new(0, m.get(0, 0), color = color.blue, textcolor =
color.white, size = size.huge)
debugLabel.set_x(bar_index)
debugLabel.set_text(str.format("Row 0: {0}, Size: {1}\nCol 0: {2}, Size: {3}",
row0, m.columns(), column0, m.rows()))

// Plot the first element of `m`.
plot(m.get(0, 0), linewidth = 3)

Although changes to an array returned by matrix.row() or matrix.col() do not directly affect a parent
matrix, it’s important to note the resulting array from a matrix containing UDTs or special types,
including line, linefill, label, box, or table, behaves as a shallow copy of a row/column, i.e., the
elements within an array returned from these functions point to the same objects as the
corresponding matrix elements.

This script contains a custom myUDT type containing a value field with an initial value of 0. It
declares a 1x1 m matrix to hold a single myUDT instance on the first bar, then calls m.row(0) to
copy the first row of the matrix as an array. On every chart bar, the script adds 1 to the value field
of the first row array element. In this case, the value field of the matrix element increases on
every bar as well since both elements reference the same object:

//@version=5
indicator("Row with reference types demo")

//@type A custom type that holds a float value.
type myUDT
 float value = 0.0

https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#op_table
https://www.tradingview.com/pine-script-reference/v5/#op_box
https://www.tradingview.com/pine-script-reference/v5/#op_label
https://www.tradingview.com/pine-script-reference/v5/#op_linefill
https://www.tradingview.com/pine-script-reference/v5/#op_line
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.row
https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_array.set
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays

//@variable A 1x1 matrix of `myUDT` type.
var matrix<myUDT> m = matrix.new<myUDT>(1, 1, myUDT.new())
//@variable A shallow copy of the first row of `m`.
array<myUDT> row = m.row(0)
//@variable The first element of the `row`.
myUDT firstElement = row.get(0)

firstElement.value += 1.0 // Add 1 to the `value` field of `firstElement`. Also
affects the element in the matrix.

plot(m.get(0, 0).value, linewidth = 3) // Plot the `value` of the `myUDT` object
from the first row and column of `m`.

Inserting

Scripts can add new rows and columns to a matrix via matrix.add_row() and matrix.add_col().
These functions insert the value references from an array into a matrix at the specified
row/column index. If the id matrix is empty (has no rows or columns), the array_id in the
call can be of any size. If a row/column exists at the specified index, the matrix increases the index
value for the existing row/column and all after it by 1.

The script below declares an empty m matrix and inserts rows and columns using the m.add_row()
and m.add_col() methods. It first inserts an array with three elements at row 0, turning m into a 1x3
matrix, then another at row 1, changing the shape to 2x3. After that, the script inserts another array
at row 0, which changes the shape of m to 3x3 and shifts the index of all rows previously at index 0
and higher. It inserts another array at the last column index, changing the shape to 3x4. Finally, it
adds an array with four values at the end row index.

The resulting matrix has four rows and columns and contains values 1-16 in ascending order. The
script displays the rows of m after each row/column insertion with a user-defined debugLabel()
function to visualize the process:

//@version=5
indicator("Rows and columns demo")

//@function Displays the rows of a matrix in a label with a note.
//@param this The matrix to display.
//@param barIndex The `bar_index` to display the label at.
//@param bgColor The background color of the label.
//@param textColor The color of the label's text.
//@param note The text to display above the rows.
method debugLabel(
 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
 color textColor = color.white, string note = ""
) =>
 labelText = note + "\n" + str.tostring(this)
 if barstate.ishistory
 label.new(
 barIndex, 0, labelText, color = bgColor, style =
label.style_label_center,
 textcolor = textColor, size = size.huge
)

//Create an empty matrix.
var m = matrix.new<float>()

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.add_col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.add_row
https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.add_col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.add_row
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id9

if bar_index == last_bar_index - 1
 debugLabel(m, bar_index - 30, note = "Empty matrix")

 // Insert an array at row 0. `m` will now have 1 row and 3 columns.
 m.add_row(0, array.from(5, 6, 7))
 debugLabel(m, bar_index - 20, note = "New row at\nindex 0")

 // Insert an array at row 1. `m` will now have 2 rows and 3 columns.
 m.add_row(1, array.from(9, 10, 11))
 debugLabel(m, bar_index - 10, note = "New row at\nindex 1")

 // Insert another array at row 0. `m` will now have 3 rows and 3 columns.
 // The values previously on row 0 will now be on row 1, and the values from
row 1 will be on row 2.
 m.add_row(0, array.from(1, 2, 3))
 debugLabel(m, bar_index, note = "New row at\nindex 0")

 // Insert an array at column 3. `m` will now have 3 rows and 4 columns.
 m.add_col(3, array.from(4, 8, 12))
 debugLabel(m, bar_index + 10, note = "New column at\nindex 3")

 // Insert an array at row 3. `m` will now have 4 rows and 4 columns.
 m.add_row(3, array.from(13, 14, 15, 16))
 debugLabel(m, bar_index + 20, note = "New row at\nindex 3")

Note

Just as the row or column arrays retrieved from a matrix of line, linefill, label, box, table, or UDT
instances behave as shallow copies, the elements of matrices containing such types reference the
same objects as the arrays inserted into them. Modifications to the element values in either object
affect the other in such cases.

Removing

To remove a specific row or column from a matrix, use matrix.remove_row() and
matrix.remove_col(). These functions remove the specified row/column and decrease the index
values of all rows/columns after it by 1.

For this example, we’ve added these lines of code to our “Rows and columns demo” script from the
section above:

// Removing example

 // Remove the first row and last column from the matrix. `m` will now have 3
rows and 3 columns.
 m.remove_row(0)
 m.remove_col(3)
 debugLabel(m, bar_index + 30, color.red, note = "Removed row 0\nand column
3")

This code removes the first row and the last column of the m matrix using the m.remove_row() and
m.remove_col() methods and displays the rows in a label at bar_index + 30. As we can see, m
has a 3x3 shape after executing this block, and the index values for all existing rows are reduced by
1:

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.remove_col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.remove_row
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-rowsandcolumns-inserting
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.remove_col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.remove_row
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id10
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-reference/v5/#op_table
https://www.tradingview.com/pine-script-reference/v5/#op_box
https://www.tradingview.com/pine-script-reference/v5/#op_label
https://www.tradingview.com/pine-script-reference/v5/#op_linefill
https://www.tradingview.com/pine-script-reference/v5/#op_line
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-rowsandcolumns-retrieving

Swapping

To swap the rows and columns of a matrix without altering its dimensions, use matrix.swap_rows()
and matrix.swap_columns(). These functions swap the locations of the elements at the
row1/column1 and row2/column2 indices.

Let’s add the following lines to the previous example, which swap the first and last rows of m and
display the changes in a label at bar_index + 40:

// Swapping example

 // Swap the first and last row. `m` retains the same dimensions.
 m.swap_rows(0, 2)
 debugLabel(m, bar_index + 40, color.purple, note = "Swapped rows 0\nand 2")

In the new label, we see the matrix has the same number of rows as before, and the first and last
rows have traded places:

Replacing

It may be desirable in some cases to completely replace a row or column in a matrix. To do so,
insert the new array at the desired row/column and remove the old elements previously at that
index.

In the following code, we’ve defined a replaceRow() method that uses the add_row() method to
insert the new values at the row index and uses the remove_row() method to remove the old row
that moved to the row + 1 index. This script uses the replaceRow() method to fill the rows of
a 3x3 matrix with the numbers 1-9. It draws a label on the chart before and after replacing the rows
using the custom debugLabel() method:

//@version=5
indicator("Replacing rows demo")

//@function Displays the rows of a matrix in a label with a note.
//@param this The matrix to display.
//@param barIndex The `bar_index` to display the label at.
//@param bgColor The background color of the label.
//@param textColor The color of the label's text.
//@param note The text to display above the rows.
method debugLabel(
 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
 color textColor = color.white, string note = ""
) =>
 labelText = note + "\n" + str.tostring(this)
 if barstate.ishistory
 label.new(
 barIndex, 0, labelText, color = bgColor, style =
label.style_label_center,
 textcolor = textColor, size = size.huge
)

//@function Replaces the `row` of `this` matrix with a new array of `values`.
//@param row The row index to replace.
//@param values The array of values to insert.

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.remove_row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.add_row
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-rowsandcolumns-removing
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-rowsandcolumns-inserting
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id12
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-rowsandcolumns-removing
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.swap_columns
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.swap_rows
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id11

method replaceRow(matrix<float> this, int row, array<float> values) =>
 this.add_row(row, values) // Inserts a copy of the `values` array at the
`row`.
 this.remove_row(row + 1) // Removes the old elements previously at the
`row`.

//@variable A 3x3 matrix.
var matrix<float> m = matrix.new<float>(3, 3, 0.0)

if bar_index == last_bar_index - 1
 m.debugLabel(note = "Original")
 // Replace each row of `m`.
 m.replaceRow(0, array.from(1.0, 2.0, 3.0))
 m.replaceRow(1, array.from(4.0, 5.0, 6.0))
 m.replaceRow(2, array.from(7.0, 8.0, 9.0))
 m.debugLabel(bar_index + 10, note = "Replaced rows")

Looping through a matrix

`for`

When a script only needs to iterate over the row/column indices in a matrix, the most common
method is to use for loops. For example, this line creates a loop with a row value that starts at 0 and
increases by one until it reaches one less than the number of rows in the m matrix (i.e., the last row
index):

for row = 0 to m.rows() - 1

To iterate over all index values in the m matrix, we can create a nested loop that iterates over each
column index on each row value:

for row = 0 to m.rows() - 1
 for column = 0 to m.columns() - 1

Let’s use this nested structure to create a method that visualizes matrix elements. In the script
below, we’ve defined a toTable() method that displays the elements of a matrix within a table
object. It iterates over each row index and over each column index on every row. Within the
loop, it converts each element to a string to display in the corresponding table cell.

On the first bar, the script creates an empty m matrix, populates it with rows, and calls
m.toTable() to display its elements:

//@version=5
indicator("for loop demo", "Matrix to table")

//@function Displays the elements of `this` matrix in a table.
//@param this The matrix to display.
//@param position The position of the table on the chart.
//@param bgColor The background color of the table.
//@param textColor The color of the text in each cell.
//@param note A note string to display on the bottom row of the table.
//@returns A new `table` object with cells corresponding to each element of
`this` matrix.
method toTable(
 matrix<float> this, string position = position.middle_center,
 color bgColor = color.blue, color textColor = color.white,

https://www.tradingview.com/pine-script-reference/v5/#op_string
https://www.tradingview.com/pine-script-reference/v5/#op_table
https://www.tradingview.com/pine-script-docs/en/v5/language/Methods.html#pagemethods
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id14
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id13

 string note = na
) =>
 //@variable The number of rows in `this` matrix.
 int rows = this.rows()
 //@variable The number of columns in `this` matrix.
 int columns = this.columns()
 //@variable A table that displays the elements of `this` matrix with an
optional `note` cell.
 table result = table.new(position, columns, rows + 1, bgColor)

 // Iterate over each row index of `this` matrix.
 for row = 0 to rows - 1
 // Iterate over each column index of `this` matrix on each `row`.
 for col = 0 to columns - 1
 //@variable The element from `this` matrix at the `row` and `col`
index.
 float element = this.get(row, col)
 // Initialize the corresponding `result` cell with the `element`
value.
 result.cell(col, row, str.tostring(element), text_color = textColor,
text_size = size.huge)

 // Initialize a merged cell on the bottom row if a `note` is provided.
 if not na(note)
 result.cell(0, rows, note, text_color = textColor, text_size =
size.huge)
 result.merge_cells(0, rows, columns - 1, rows)

 result // Return the `result` table.

//@variable A 3x4 matrix of values.
var m = matrix.new<float>()

if bar_index == 0
 // Add rows to `m`.
 m.add_row(0, array.from(1, 2, 3))
 m.add_row(1, array.from(5, 6, 7))
 m.add_row(2, array.from(9, 10, 11))
 // Add a column to `m`.
 m.add_col(3, array.from(4, 8, 12))
 // Display the elements of `m` in a table.
 m.toTable()

`for…in`

When a script needs to iterate over and retrieve the rows of a matrix, using the for…in structure is
often preferred over the standard for loop. This structure directly references the row arrays in a
matrix, making it a more convenient option for such use cases. For example, this line creates a loop
that returns a row array for each row in the m matrix:

for row in m

The following indicator calculates the moving average of OHLC data with an input length and
displays the values on the chart. The custom rowWiseAvg() method loops through the rows of a
matrix using a for...in structure to produce an array containing the array.avg() of each row.

On the first chart bar, the script creates a new m matrix with four rows and length columns, which
it queues a new column of OHLC data into via the m.add_col() and m.remove_col() methods on
each subsequent bar. It uses m.rowWiseAvg() to calculate the array of row-wise averages,
then it plots the element values on the chart:

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.remove_col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.add_col
https://www.tradingview.com/pine-script-reference/v5/#fun_array.avg
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays
https://www.tradingview.com/pine-script-reference/v5/#op_for%7Bdot%7D%7Bdot%7D%7Bdot%7Din
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id15

//@version=5
indicator("for...in loop demo", "Average OHLC", overlay = true)

//@variable The number of terms in the average.
int length = input.int(20, "Length", minval = 1)

//@function Calculates the average of each matrix row.
method rowWiseAvg(matrix<float> this) =>
 //@variable An array with elements corresponding to each row's average.
 array<float> result = array.new<float>()
 // Iterate over each `row` of `this` matrix.
 for row in this
 // Push the average of each `row` into the `result`.
 result.push(row.avg())
 result // Return the resulting array.

//@variable A 4x`length` matrix of values.
var matrix<float> m = matrix.new<float>(4, length)

// Add a new column containing OHLC values to the matrix.
m.add_col(m.columns(), array.from(open, high, low, close))
// Remove the first column.
m.remove_col(0)

//@variable An array containing averages of `open`, `high`, `low`, and `close`
over `length` bars.
array<float> averages = m.rowWiseAvg()

plot(averages.get(0), "Average Open", color.blue, 2)
plot(averages.get(1), "Average High", color.green, 2)
plot(averages.get(2), "Average Low", color.red, 2)
plot(averages.get(3), "Average Close", color.orange, 2)

Note that:
• for...in loops can also reference the index value of each row. For example, for
[i, row] in m creates a tuple containing the i row index and the corresponding
row array from the m matrix on each loop iteration.

Copying a matrix

Shallow copies

Pine scripts can copy matrices via matrix.copy(). This function returns a shallow copy of a matrix
that does not affect the shape of the original matrix or its references.

For example, this script assigns a new matrix to the myMatrix variable and adds two columns. It
creates a new myCopy matrix from myMatrix using the myMatrix.copy() method, then adds a
new row. It displays the rows of both matrices in labels via the user-defined debugLabel()
function:

//@version=5
indicator("Shallow copy demo")

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.copy
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.copy
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id17
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id16

//@function Displays the rows of a matrix in a label with a note.
//@param this The matrix to display.
//@param barIndex The `bar_index` to display the label at.
//@param bgColor The background color of the label.
//@param textColor The color of the label's text.
//@param note The text to display above the rows.
method debugLabel(
 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
 color textColor = color.white, string note = ""
) =>
 labelText = note + "\n" + str.tostring(this)
 if barstate.ishistory
 label.new(
 barIndex, 0, labelText, color = bgColor, style =
label.style_label_center,
 textcolor = textColor, size = size.huge
)

//@variable A 2x2 `float` matrix.
matrix<float> myMatrix = matrix.new<float>()
myMatrix.add_col(0, array.from(1.0, 3.0))
myMatrix.add_col(1, array.from(2.0, 4.0))

//@variable A shallow copy of `myMatrix`.
matrix<float> myCopy = myMatrix.copy()
// Add a row to the last index of `myCopy`.
myCopy.add_row(myCopy.rows(), array.from(5.0, 6.0))

if bar_index == last_bar_index - 1
 // Display the rows of both matrices in separate labels.
 myMatrix.debugLabel(note = "Original")
 myCopy.debugLabel(bar_index + 10, color.green, note = "Shallow Copy")

It’s important to note that the elements within shallow copies of a matrix point to the same values as
the original matrix. When matrices contain special types (line, linefill, label, box, or table) or user-
defined types, the elements of a shallow copy reference the same objects as the original.

This script declares a myMatrix variable with a newLabel as the initial value. It then copies
myMatrix to a myCopy variable via myMatrix.copy() and plots the number of labels. As we see
below, there’s only one label on the chart, as the element in myCopy references the same object as
the element in myMatrix. Consequently, changes to the element values in myCopy affect the
values in both matrices:

//@version=5
indicator("Shallow copy demo")

//@variable Initial value of the original matrix elements.
var label newLabel = label.new(
 bar_index, 1, "Original", color = color.blue, textcolor = color.white, size
= size.huge
)

//@variable A 1x1 matrix containing a new `label` instance.
var matrix<label> myMatrix = matrix.new<label>(1, 1, newLabel)
//@variable A shallow copy of `myMatrix`.
var matrix<label> myCopy = myMatrix.copy()

//@variable The first label from the `myCopy` matrix.

https://www.tradingview.com/pine-script-reference/v5/#op_label
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.copy
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-reference/v5/#op_table
https://www.tradingview.com/pine-script-reference/v5/#op_box
https://www.tradingview.com/pine-script-reference/v5/#op_label
https://www.tradingview.com/pine-script-reference/v5/#op_linefill
https://www.tradingview.com/pine-script-reference/v5/#op_line

label testLabel = myCopy.get(0, 0)

// Change the `text`, `style`, and `x` values of `testLabel`. Also affects the
`newLabel`.
testLabel.set_text("Copy")
testLabel.set_style(label.style_label_up)
testLabel.set_x(bar_index)

// Plot the total number of labels.
plot(label.all.size(), linewidth = 3)

Deep copies

One can produce a deep copy of a matrix (i.e., a matrix whose elements point to copies of the
original values) by explicitly copying each object the matrix references.

Here, we’ve added a deepCopy() user-defined method to our previous script. The method creates
a new matrix and uses nested for loops to assign all elements to copies of the originals. When the
script calls this method instead of the built-in copy(), we see that there are now two labels on the
chart, and any changes to the label from myCopy do not affect the one from myMatrix:

//@version=5
indicator("Deep copy demo")

//@function Returns a deep copy of a label matrix.
method deepCopy(matrix<label> this) =>
 //@variable A deep copy of `this` matrix.
 matrix<label> that = this.copy()
 for row = 0 to that.rows() - 1
 for column = 0 to that.columns() - 1
 // Assign the element at each `row` and `column` of `that` matrix to
a copy of the retrieved label.
 that.set(row, column, that.get(row, column).copy())
 that

//@variable Initial value of the original matrix.
var label newLabel = label.new(
 bar_index, 2, "Original", color = color.blue, textcolor = color.white, size
= size.huge
)

//@variable A 1x1 matrix containing a new `label` instance.
var matrix<label> myMatrix = matrix.new<label>(1, 1, newLabel)
//@variable A deep copy of `myMatrix`.
var matrix<label> myCopy = myMatrix.deepCopy()

//@variable The first label from the `myCopy` matrix.
label testLabel = myCopy.get(0, 0)

// Change the `text`, `style`, and `x` values of `testLabel`. Does not affect
the `newLabel`.
testLabel.set_text("Copy")
testLabel.set_style(label.style_label_up)
testLabel.set_x(bar_index)

// Change the `x` value of `newLabel`.
newLabel.set_x(bar_index)

// Plot the total number of labels.

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.copy
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-loopingthroughamatrix-for
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id18

plot(label.all.size(), linewidth = 3)

Submatrices

In Pine, a submatrix is a shallow copy of an existing matrix that only includes the rows and columns
specified by the from_row/column and to_row/column parameters. In essence, it is a sliced
copy of a matrix.

For example, the script below creates an mSub matrix from the m matrix via the m.submatrix()
method, then calls our user-defined debugLabel() function to display the rows of both matrices
in labels:

//@version=5
indicator("Submatrix demo")

//@function Displays the rows of a matrix in a label with a note.
//@param this The matrix to display.
//@param barIndex The `bar_index` to display the label at.
//@param bgColor The background color of the label.
//@param textColor The color of the label's text.
//@param note The text to display above the rows.
method debugLabel(
 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
 color textColor = color.white, string note = ""
) =>
 labelText = note + "\n" + str.tostring(this)
 if barstate.ishistory
 label.new(
 barIndex, 0, labelText, color = bgColor, style =
label.style_label_center,
 textcolor = textColor, size = size.huge
)

//@variable A 3x3 matrix of values.
var m = matrix.new<float>()

if bar_index == last_bar_index - 1
 // Add columns to `m`.
 m.add_col(0, array.from(9, 6, 3))
 m.add_col(1, array.from(8, 5, 2))
 m.add_col(2, array.from(7, 4, 1))
 // Display the rows of `m`.
 m.debugLabel(note = "Original Matrix")

 //@variable A 2x2 submatrix of `m` containing the first two rows and
columns.
 matrix<float> mSub = m.submatrix(from_row = 0, to_row = 2, from_column = 0,
to_column = 2)
 // Display the rows of `mSub`
 debugLabel(mSub, bar_index + 10, bgColor = color.green, note = "Submatrix")

Scope and history
Matrix variables leave historical trails on each bar, allowing scripts to use the history-referencing
operator [] to interact with past matrix instances previously assigned to a variable. Additionally,
scripts can modify matrices assigned to global variables from within the scopes of functions,

https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#pageuserdefinedfunctions
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id20
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.submatrix
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-copyingamatrix-shallowcopies
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id19

methods, and conditional structures.

This script calculates the average ratios of body and wick distances relative to the bar range over
length bars. It displays the data along with values from length bars ago in a table. The user-
defined addData() function adds columns of current and historical ratios to the
globalMatrix, and the calcAvg() function references previous matrices assigned to
globalMatrix using the [] operator to calculate a matrix of averages:

//@version=5
indicator("Scope and history demo", "Bar ratio comparison")

int length = input.int(10, "Length", 1)

//@variable A global matrix.
matrix<float> globalMatrix = matrix.new<float>()

//@function Calculates the ratio of body range to candle range.
bodyRatio() =>
 math.abs(close - open) / (high - low)

//@function Calculates the ratio of upper wick range to candle range.
upperWickRatio() =>
 (high - math.max(open, close)) / (high - low)

//@function Calculates the ratio of lower wick range to candle range.
lowerWickRatio() =>
 (math.min(open, close) - low) / (high - low)

//@function Adds data to the `globalMatrix`.
addData() =>
 // Add a new column of data at `column` 0.
 globalMatrix.add_col(0, array.from(bodyRatio(), upperWickRatio(),
lowerWickRatio()))
 //@variable The column of `globalMatrix` from index 0 `length` bars ago.
 array<float> pastValues = globalMatrix.col(0)[length]
 // Add `pastValues` to the `globalMatrix`, or an array of `na` if
`pastValues` is `na`.
 if na(pastValues)
 globalMatrix.add_col(1, array.new<float>(3))
 else
 globalMatrix.add_col(1, pastValues)

//@function Returns the `length`-bar average of matrices assigned to
`globalMatrix` on historical bars.
calcAvg() =>
 //@variable The sum historical `globalMatrix` matrices.
 matrix<float> sums = matrix.new<float>(globalMatrix.rows(),
globalMatrix.columns(), 0.0)
 for i = 0 to length - 1
 //@variable The `globalMatrix` matrix `i` bars before the current bar.
 matrix<float> previous = globalMatrix[i]
 // Break the loop if `previous` is `na`.
 if na(previous)
 sums.fill(na)
 break
 // Assign the sum of `sums` and `previous` to `sums`.
 sums := matrix.sum(sums, previous)
 // Divide the `sums` matrix by the `length`.
 result = sums.mult(1.0 / length)

https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#pageconditionalstructures
https://www.tradingview.com/pine-script-docs/en/v5/language/Methods.html#pagemethods

// Add data to the `globalMatrix`.
addData()

//@variable The historical average of the `globalMatrix` matrices.
globalAvg = calcAvg()

//@variable A `table` displaying information from the `globalMatrix`.
var table infoTable = table.new(
 position.middle_center, globalMatrix.columns() + 1, globalMatrix.rows() +
1, bgcolor = color.navy
)

// Define value cells.
for [i, row] in globalAvg
 for [j, value] in row
 color textColor = value > 0.333 ? color.orange : color.gray
 infoTable.cell(j + 1, i + 1, str.tostring(value), text_color =
textColor, text_size = size.huge)

// Define header cells.
infoTable.cell(0, 1, "Body ratio", text_color = color.white, text_size =
size.huge)
infoTable.cell(0, 2, "Upper wick ratio", text_color = color.white, text_size =
size.huge)
infoTable.cell(0, 3, "Lower wick ratio", text_color = color.white, text_size =
size.huge)
infoTable.cell(1, 0, "Current average", text_color = color.white, text_size =
size.huge)
infoTable.cell(2, 0, str.format("{0} bars ago", length), text_color =
color.white, text_size = size.huge)

Note that:
• The addData() and calcAvg() functions have no parameters, as they directly

interact with the globalMatrix and length variables declared in the outer scope.
• calcAvg() calculates the average by adding previous matrices using

matrix.sum() and multiplying all elements by 1 / length using matrix.mult(). We
discuss these and other specialized functions in our Matrix calculations section below.

Inspecting a matrix
The ability to inspect the shape of a matrix and patterns within its elements is crucial, as it helps
reveal important information about a matrix and its compatibility with various calculations and
transformations. Pine Script® includes several built-ins for matrix inspection, including
matrix.is_square(), matrix.is_identity(), matrix.is_diagonal(), matrix.is_antidiagonal(),
matrix.is_symmetric(), matrix.is_antisymmetric(), matrix.is_triangular(), matrix.is_stochastic(),
matrix.is_binary(), and matrix.is_zero().

To demonstrate these features, this example contains a custom inspect() method that uses
conditional blocks with matrix.is_*() functions to return information about a matrix. It
displays a string representation of an m matrix and the description returned from m.inspect() in
labels on the chart:

//@version=5
indicator("Matrix inspection demo")

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_zero
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_binary
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_stochastic
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_triangular
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_antisymmetric
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_symmetric
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_antidiagonal
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_diagonal
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_identity
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_square
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id21
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-matrixcalculations
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.mult
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.sum

//@function Inspects a matrix using `matrix.is_*()` functions and returns a
`string` describing some of its features.
method inspect(matrix<int> this)=>
 //@variable A string describing `this` matrix.
 string result = "This matrix:\n"
 if this.is_square()
 result += "- Has an equal number of rows and columns.\n"
 if this.is_binary()
 result += "- Contains only 1s and 0s.\n"
 if this.is_zero()
 result += "- Is filled with 0s.\n"
 if this.is_triangular()
 result += "- Contains only 0s above and/or below its main diagonal.\n"
 if this.is_diagonal()
 result += "- Only has nonzero values in its main diagonal.\n"
 if this.is_antidiagonal()
 result += "- Only has nonzero values in its main antidiagonal.\n"
 if this.is_symmetric()
 result += "- Equals its transpose.\n"
 if this.is_antisymmetric()
 result += "- Equals the negative of its transpose.\n"
 if this.is_identity()
 result += "- Is the identity matrix.\n"
 result

//@variable A 4x4 identity matrix.
matrix<int> m = matrix.new<int>()

// Add rows to the matrix.
m.add_row(0, array.from(1, 0, 0, 0))
m.add_row(1, array.from(0, 1, 0, 0))
m.add_row(2, array.from(0, 0, 1, 0))
m.add_row(3, array.from(0, 0, 0, 1))

if bar_index == last_bar_index - 1
 // Display the `m` matrix in a blue label.
 label.new(
 bar_index, 0, str.tostring(m), color = color.blue, style =
label.style_label_right,
 textcolor = color.white, size = size.huge
)
 // Display the result of `m.inspect()` in a purple label.
 label.new(
 bar_index, 0, m.inspect(), color = color.purple, style =
label.style_label_left,
 textcolor = color.white, size = size.huge
)

Manipulating a matrix

Reshaping

The shape of a matrix can determine its compatibility with various matrix operations. In some
cases, it is necessary to change the dimensions of a matrix without affecting the number of elements
or the values they reference, otherwise known as reshaping. To reshape a matrix in Pine, use the
matrix.reshape() function.

This example demonstrates the results of multiple reshaping operations on a matrix. The initial m
matrix has a 1x8 shape (one row and eight columns). Through successive calls to the m.reshape()
method, the script changes the shape of m to 2x4, 4x2, and 8x1. It displays each reshaped matrix in

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.reshape
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.reshape
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id23
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id22

a label on the chart using the custom debugLabel() method:

//@version=5
indicator("Reshaping example")

//@function Displays the rows of a matrix in a label with a note.
//@param this The matrix to display.
//@param barIndex The `bar_index` to display the label at.
//@param bgColor The background color of the label.
//@param textColor The color of the label's text.
//@param note The text to display above the rows.
method debugLabel(
 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
 color textColor = color.white, string note = ""
) =>
 labelText = note + "\n" + str.tostring(this)
 if barstate.ishistory
 label.new(
 barIndex, 0, labelText, color = bgColor, style =
label.style_label_center,
 textcolor = textColor, size = size.huge
)

//@variable A matrix containing the values 1-8.
matrix<int> m = matrix.new<int>()

if bar_index == last_bar_index - 1
 // Add the initial vector of values.
 m.add_row(0, array.from(1, 2, 3, 4, 5, 6, 7, 8))
 m.debugLabel(note = "Initial 1x8 matrix")

 // Reshape. `m` now has 2 rows and 4 columns.
 m.reshape(2, 4)
 m.debugLabel(bar_index + 10, note = "Reshaped to 2x4")

 // Reshape. `m` now has 4 rows and 2 columns.
 m.reshape(4, 2)
 m.debugLabel(bar_index + 20, note = "Reshaped to 4x2")

 // Reshape. `m` now has 8 rows and 1 column.
 m.reshape(8, 1)
 m.debugLabel(bar_index + 30, note = "Reshaped to 8x1")

Note that:
• The order of elements in m does not change with each m.reshape() call.
• When reshaping a matrix, the product of the rows and columns arguments must

equal the matrix.elements_count() value, as matrix.reshape() cannot change the
number of elements in a matrix.

Reversing

One can reverse the order of all elements in a matrix using matrix.reverse(). This function moves
the references of an m-by-n matrix id at the i-th row and j-th column to the m - 1 - i row and n - 1 -
j column.

For example, this script creates a 3x3 matrix containing the values 1-9 in ascending order, then uses
the reverse() method to reverse its contents. It displays the original and modified versions of the

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.reverse
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.reverse
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id24
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.reshape
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.elements_count

matrix in labels on the chart via m.debugLabel():

//@version=5
indicator("Reversing demo")

//@function Displays the rows of a matrix in a label with a note.
//@param this The matrix to display.
//@param barIndex The `bar_index` to display the label at.
//@param bgColor The background color of the label.
//@param textColor The color of the label's text.
//@param note The text to display above the rows.
method debugLabel(
 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
 color textColor = color.white, string note = ""
) =>
 labelText = note + "\n" + str.tostring(this)
 if barstate.ishistory
 label.new(
 barIndex, 0, labelText, color = bgColor, style =
label.style_label_center,
 textcolor = textColor, size = size.huge
)

//@variable A 3x3 matrix.
matrix<float> m = matrix.new<float>()

// Add rows to `m`.
m.add_row(0, array.from(1, 2, 3))
m.add_row(1, array.from(4, 5, 6))
m.add_row(2, array.from(7, 8, 9))

if bar_index == last_bar_index - 1
 // Display the contents of `m`.
 m.debugLabel(note = "Original")
 // Reverse `m`, then display its contents.
 m.reverse()
 m.debugLabel(bar_index + 10, color.red, note = "Reversed")

Transposing

Transposing a matrix is a fundamental operation that flips all rows and columns in a matrix about its
main diagonal (the diagonal vector of all values in which the row index equals the column index).
This process produces a new matrix with reversed row and column dimensions, known as the
transpose. Scripts can calculate the transpose of a matrix using matrix.transpose().

For any m-row, n-column matrix, the matrix returned from matrix.transpose() will have n rows and
m columns. All elements in a matrix at the i-th row and j-th column correspond to the elements in
its transpose at the j-th row and i-th column.

This example declares a 2x4 m matrix, calculates its transpose using the m.transpose() method, and
displays both matrices on the chart using our custom debugLabel() method. As we can see
below, the transposed matrix has a 4x2 shape, and the rows of the transpose match the columns of
the original:

//@version=5

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.transpose
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.transpose
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.transpose
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id25

indicator("Transpose example")

//@function Displays the rows of a matrix in a label with a note.
//@param this The matrix to display.
//@param barIndex The `bar_index` to display the label at.
//@param bgColor The background color of the label.
//@param textColor The color of the label's text.
//@param note The text to display above the rows.
method debugLabel(
 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
 color textColor = color.white, string note = ""
) =>
 labelText = note + "\n" + str.tostring(this)
 if barstate.ishistory
 label.new(
 barIndex, 0, labelText, color = bgColor, style =
label.style_label_center,
 textcolor = textColor, size = size.huge
)

//@variable A 2x4 matrix.
matrix<int> m = matrix.new<int>()

// Add columns to `m`.
m.add_col(0, array.from(1, 5))
m.add_col(1, array.from(2, 6))
m.add_col(2, array.from(3, 7))
m.add_col(3, array.from(4, 8))

//@variable The transpose of `m`. Has a 4x2 shape.
matrix<int> mt = m.transpose()

if bar_index == last_bar_index - 1
 m.debugLabel(note = "Original")
 mt.debugLabel(bar_index + 10, note = "Transpose")

Sorting

Scripts can sort the contents of a matrix via matrix.sort(). Unlike array.sort(), which sorts elements,
this function organizes all rows in a matrix in a specified order (order.ascending by default) based
on the values in a specified column.

This script declares a 3x3 m matrix, sorts the rows of the m1 copy in ascending order based on the
first column, then sorts the rows of the m2 copy in descending order based on the second column. It
displays the original matrix and sorted copies in labels using our debugLabel() method:

//@version=5
indicator("Sorting rows example")

//@function Displays the rows of a matrix in a label with a note.
//@param this The matrix to display.
//@param barIndex The `bar_index` to display the label at.
//@param bgColor The background color of the label.
//@param textColor The color of the label's text.
//@param note The text to display above the rows.
method debugLabel(
 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
 color textColor = color.white, string note = ""

https://www.tradingview.com/pine-script-reference/v5/#var_order.ascending
https://www.tradingview.com/pine-script-reference/v5/#fun_array.sort
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.sort
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id26

) =>
 labelText = note + "\n" + str.tostring(this)
 if barstate.ishistory
 label.new(
 barIndex, 0, labelText, color = bgColor, style =
label.style_label_center,
 textcolor = textColor, size = size.huge
)

//@variable A 3x3 matrix.
matrix<int> m = matrix.new<int>()

if bar_index == last_bar_index - 1
 // Add rows to `m`.
 m.add_row(0, array.from(3, 2, 4))
 m.add_row(1, array.from(1, 9, 6))
 m.add_row(2, array.from(7, 8, 9))
 m.debugLabel(note = "Original")

 // Copy `m` and sort rows in ascending order based on the first column
(default).
 matrix<int> m1 = m.copy()
 m1.sort()
 m1.debugLabel(bar_index + 10, color.green, note = "Sorted using col
0\n(Ascending)")

 // Copy `m` and sort rows in descending order based on the second column.
 matrix<int> m2 = m.copy()
 m2.sort(1, order.descending)
 m2.debugLabel(bar_index + 20, color.red, note = "Sorted using col
1\n(Descending)")

It’s important to note that matrix.sort() does not sort the columns of a matrix. However, one can use
this function to sort matrix columns with the help of matrix.transpose().

As an example, this script contains a sortColumns() method that uses the sort() method to sort
the transpose of a matrix using the column corresponding to the row of the original matrix. The
script uses this method to sort the m matrix based on the contents of its first row:

//@version=5
indicator("Sorting columns example")

//@function Displays the rows of a matrix in a label with a note.
//@param this The matrix to display.
//@param barIndex The `bar_index` to display the label at.
//@param bgColor The background color of the label.
//@param textColor The color of the label's text.
//@param note The text to display above the rows.
method debugLabel(
 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
 color textColor = color.white, string note = ""
) =>
 labelText = note + "\n" + str.tostring(this)
 if barstate.ishistory
 label.new(
 barIndex, 0, labelText, color = bgColor, style =
label.style_label_center,
 textcolor = textColor, size = size.huge
)

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.transpose
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.sort
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.transpose
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.sort

//@function Sorts the columns of `this` matrix based on the values in the
specified `row`.
method sortColumns(matrix<int> this, int row = 0, bool ascending = true) =>
 //@variable The transpose of `this` matrix.
 matrix<int> thisT = this.transpose()
 //@variable Is `order.ascending` when `ascending` is `true`,
`order.descending` otherwise.
 order = ascending ? order.ascending : order.descending
 // Sort the rows of `thisT` using the `row` column.
 thisT.sort(row, order)
 //@variable A copy of `this` matrix with sorted columns.
 result = thisT.transpose()

//@variable A 3x3 matrix.
matrix<int> m = matrix.new<int>()

if bar_index == last_bar_index - 1
 // Add rows to `m`.
 m.add_row(0, array.from(3, 2, 4))
 m.add_row(1, array.from(1, 9, 6))
 m.add_row(2, array.from(7, 8, 9))
 m.debugLabel(note = "Original")

 // Sort the columns of `m` based on the first row and display the result.
 m.sortColumns(0).debugLabel(bar_index + 10, note = "Sorted using row
0\n(Ascending)")

Concatenating

Scripts can concatenate two matrices using matrix.concat(). This function appends the rows of an
id2 matrix to the end of an id1 matrix with the same number of columns.

To create a matrix with elements representing the columns of a matrix appended to another,
transpose both matrices, use matrix.concat() on the transposed matrices, then transpose() the result.

For example, this script appends the rows of the m2 matrix to the m1 matrix and appends their
columns using transposed copies of the matrices. It displays the m1 and m2 matrices and the results
after concatenating their rows and columns in labels using the custom debugLabel() method:

//@version=5
indicator("Concatenation demo")

//@function Displays the rows of a matrix in a label with a note.
//@param this The matrix to display.
//@param barIndex The `bar_index` to display the label at.
//@param bgColor The background color of the label.
//@param textColor The color of the label's text.
//@param note The text to display above the rows.
method debugLabel(
 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
 color textColor = color.white, string note = ""
) =>
 labelText = note + "\n" + str.tostring(this)
 if barstate.ishistory
 label.new(
 barIndex, 0, labelText, color = bgColor, style =
label.style_label_center,
 textcolor = textColor, size = size.huge
)

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.transpose
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.concat
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-manipulatingamatrix-transposing
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.concat
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id27

//@variable A 2x3 matrix filled with 1s.
matrix<int> m1 = matrix.new<int>(2, 3, 1)
//@variable A 2x3 matrix filled with 2s.
matrix<int> m2 = matrix.new<int>(2, 3, 2)

//@variable The transpose of `m1`.
t1 = m1.transpose()
//@variable The transpose of `m2`.
t2 = m2.transpose()

if bar_index == last_bar_index - 1
 // Display the original matrices.
 m1.debugLabel(note = "Matrix 1")
 m2.debugLabel(bar_index + 10, note = "Matrix 2")
 // Append the rows of `m2` to the end of `m1` and display `m1`.
 m1.concat(m2)
 m1.debugLabel(bar_index + 20, color.blue, note = "Appended rows")
 // Append the rows of `t2` to the end of `t1`, then display the transpose of
`t1.
 t1.concat(t2)
 t1.transpose().debugLabel(bar_index + 30, color.purple, note = "Appended
columns")

Matrix calculations

Element-wise calculations

Pine scripts can calculate the average, minimum, maximum, and mode of all elements within a
matrix via matrix.avg(), matrix.min(), matrix.max(), and matrix.mode(). These functions operate the
same as their array.* equivalents, allowing users to run element-wise calculations on a matrix,
its submatrices, and its rows and columns using the same syntax. For example, the built-in
*.avg() functions called on a 3x3 matrix with values 1-9 and an array with the same nine
elements will both return a value of 5.

The script below uses *.avg(), *.max(), and *.min() methods to calculate developing
averages and extremes of OHLC data in a period. It adds a new column of open, high, low, and
close values to the end of the ohlcData matrix whenever queueColumn is true. When
false, the script uses the get() and set() matrix methods to adjust the elements in the last column
for developing HLC values in the current period. It uses the ohlcData matrix, a submatrix(), and
row() and col() arrays to calculate the developing OHLC4 and HL2 averages over length periods,
the maximum high and minimum low over length periods, and the current period’s developing
OHLC4 price:

//@version=5
indicator("Element-wise calculations example", "Developing values", overlay =
true)

//@variable The number of data points in the averages.
int length = input.int(3, "Length", 1)
//@variable The timeframe of each reset period.
string timeframe = input.timeframe("D", "Reset Timeframe")

//@variable A 4x`length` matrix of OHLC values.
var matrix<float> ohlcData = matrix.new<float>(4, length)

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.submatrix
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.set
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.get
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-rowsandcolumns
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-copyingamatrix-submatrices
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.mode
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.max
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.min
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.avg
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id29
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id28

//@variable Is `true` at the start of a new bar at the `timeframe`.
bool queueColumn = timeframe.change(timeframe)

if queueColumn
 // Add new values to the end column of `ohlcData`.
 ohlcData.add_col(length, array.from(open, high, low, close))
 // Remove the oldest column from `ohlcData`.
 ohlcData.remove_col(0)
else
 // Adjust the last element of column 1 for new highs.
 if high > ohlcData.get(1, length - 1)
 ohlcData.set(1, length - 1, high)
 // Adjust the last element of column 2 for new lows.
 if low < ohlcData.get(2, length - 1)
 ohlcData.set(2, length - 1, low)
 // Adjust the last element of column 3 for the new closing price.
 ohlcData.set(3, length - 1, close)

//@variable The `matrix.avg()` of all elements in `ohlcData`.
avgOHLC4 = ohlcData.avg()
//@variable The `matrix.avg()` of all elements in rows 1 and 2, i.e., the
average of all `high` and `low` values.
avgHL2 = ohlcData.submatrix(from_row = 1, to_row = 3).avg()
//@variable The `matrix.max()` of all values in `ohlcData`. Equivalent to
`ohlcData.row(1).max()`.
maxHigh = ohlcData.max()
//@variable The `array.min()` of all `low` values in `ohlcData`. Equivalent to
`ohlcData.min()`.
minLow = ohlcData.row(2).min()
//@variable The `array.avg()` of the last column in `ohlcData`, i.e., the
current OHLC4.
ohlc4Value = ohlcData.col(length - 1).avg()

plot(avgOHLC4, "Average OHLC4", color.purple, 2)
plot(avgHL2, "Average HL2", color.navy, 2)
plot(maxHigh, "Max High", color.green)
plot(minLow, "Min Low", color.red)
plot(ohlc4Value, "Current OHLC4", color.blue)

Note that:
• In this example, we used array.*() and matrix.*() methods interchangeably to

demonstrate their similarities in syntax and behavior.
• Users can calculate the matrix equivalent of array.sum() by multiplying the

matrix.avg() by the matrix.elements_count().

Special calculations

Pine Script® features several built-in functions for performing essential matrix arithmetic and linear
algebra operations, including matrix.sum(), matrix.diff(), matrix.mult(), matrix.pow(), matrix.det(),
matrix.inv(), matrix.pinv(), matrix.rank(), matrix.trace(), matrix.eigenvalues(),
matrix.eigenvectors(), and matrix.kron(). These functions are advanced features that facilitate a
variety of matrix calculations and transformations.

Below, we explain a few fundamental functions with some basic examples.

`matrix.sum()` and `matrix.diff()`

Scripts can perform addition and subtraction of two matrices with the same shape or a matrix and a

https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id31
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.kron
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.eigenvectors
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.eigenvalues
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.trace
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rank
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.pinv
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.inv
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.det
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.pow
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.mult
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.diff
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.sum
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id30
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.elements_count
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.avg
https://www.tradingview.com/pine-script-reference/v5/#fun_array.sum
https://www.tradingview.com/pine-script-reference/v5/#op_matrix
https://www.tradingview.com/pine-script-reference/v5/#op_array

scalar value using the matrix.sum() and matrix.diff() functions. These functions use the values from
the id2 matrix or scalar to add to or subtract from the elements in id1.

This script demonstrates a simple example of matrix addition and subtraction in Pine. It creates a
3x3 matrix, calculates its transpose, then calculates the matrix.sum() and matrix.diff() of the two
matrices. This example displays the original matrix, its transpose, and the resulting sum and
difference matrices in labels on the chart:

//@version=5
indicator("Matrix sum and diff example")

//@function Displays the rows of a matrix in a label with a note.
//@param this The matrix to display.
//@param barIndex The `bar_index` to display the label at.
//@param bgColor The background color of the label.
//@param textColor The color of the label's text.
//@param note The text to display above the rows.
method debugLabel(
 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
 color textColor = color.white, string note = ""
) =>
 labelText = note + "\n" + str.tostring(this)
 if barstate.ishistory
 label.new(
 barIndex, 0, labelText, color = bgColor, style =
label.style_label_center,
 textcolor = textColor, size = size.huge
)

//@variable A 3x3 matrix.
m = matrix.new<float>()

// Add rows to `m`.
m.add_row(0, array.from(0.5, 1.0, 1.5))
m.add_row(1, array.from(2.0, 2.5, 3.0))
m.add_row(2, array.from(3.5, 4.0, 4.5))

if bar_index == last_bar_index - 1
 // Display `m`.
 m.debugLabel(note = "A")
 // Get and display the transpose of `m`.
 matrix<float> t = m.transpose()
 t.debugLabel(bar_index + 10, note = "Aᵀ")
 // Calculate the sum of the two matrices. The resulting matrix is symmetric.
 matrix.sum(m, t).debugLabel(bar_index + 20, color.green, note = "A + Aᵀ")
 // Calculate the difference between the two matrices. The resulting matrix
is antisymmetric.
 matrix.diff(m, t).debugLabel(bar_index + 30, color.red, note = "A - Aᵀ")

Note that:
• In this example, we’ve labeled the original matrix as “A” and the transpose as “AT”.
• Adding “A” and “AT” produces a symmetric matrix, and subtracting them produces an

antisymmetric matrix.

`matrix.mult()`

Scripts can multiply two matrices via the matrix.mult() function. This function also facilitates the

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.mult
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id32
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_antisymmetric
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_symmetric
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.transpose
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.diff
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.sum
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-manipulatingamatrix-transposing
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.diff
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.sum

multiplication of a matrix by an array or a scalar value.

In the case of multiplying two matrices, unlike addition and subtraction, matrix multiplication does
not require two matrices to share the same shape. However, the number of columns in the first
matrix must equal the number of rows in the second one. The resulting matrix returned by
matrix.mult() will contain the same number of rows as id1 and the same number of columns as
id2. For instance, a 2x3 matrix multiplied by a 3x4 matrix will produce a matrix with two rows
and four columns, as shown below. Each value within the resulting matrix is the dot product of the
corresponding row in id1 and column in id2:

//@version=5
indicator("Matrix mult example")

//@function Displays the rows of a matrix in a label with a note.
//@param this The matrix to display.
//@param barIndex The `bar_index` to display the label at.
//@param bgColor The background color of the label.
//@param textColor The color of the label's text.
//@param note The text to display above the rows.
method debugLabel(
 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
 color textColor = color.white, string note = ""
) =>
 labelText = note + "\n" + str.tostring(this)
 if barstate.ishistory
 label.new(
 barIndex, 0, labelText, color = bgColor, style =
label.style_label_center,
 textcolor = textColor, size = size.huge
)

//@variable A 2x3 matrix.
a = matrix.new<float>()
//@variable A 3x4 matrix.
b = matrix.new<float>()

// Add rows to `a`.
a.add_row(0, array.from(1, 2, 3))
a.add_row(1, array.from(4, 5, 6))

// Add rows to `b`.
b.add_row(0, array.from(0.5, 1.0, 1.5, 2.0))
b.add_row(1, array.from(2.5, 3.0, 3.5, 4.0))
b.add_row(0, array.from(4.5, 5.0, 5.5, 6.0))

if bar_index == last_bar_index - 1
 //@variable The result of `a` * `b`.
 matrix<float> ab = a.mult(b)
 // Display `a`, `b`, and `ab` matrices.
 debugLabel(a, note = "A")
 debugLabel(b, bar_index + 10, note = "B")
 debugLabel(ab, bar_index + 20, color.green, note = "A * B")

Note that:
• In contrast to the multiplication of scalars, matrix multiplication is non-commutative,

i.e., matrix.mult(a, b) does not necessarily produce the same result as
matrix.mult(b, a). In the context of our example, the latter will raise a runtime
error because the number of columns in b doesn’t equal the number of rows in a.

https://en.wikipedia.org/wiki/Dot_product
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.mult
https://www.tradingview.com/pine-script-reference/v5/#op_array

When multiplying a matrix and an array, this function treats the operation the same as multiplying
id1 by a single-column matrix, but it returns an array with the same number of elements as the
number of rows in id1. When matrix.mult() passes a scalar as its id2 value, the function returns a
new matrix whose elements are the elements in id1 multiplied by the id2 value.

`matrix.det()`

A determinant is a scalar value associated with a square matrix that describes some of its
characteristics, namely its invertibility. If a matrix has an inverse, its determinant is nonzero.
Otherwise, the matrix is singular (non-invertible). Scripts can calculate the determinant of a matrix
via matrix.det().

Programmers can use determinants to detect similarities between matrices, identify full-rank and
rank-deficient matrices, and solve systems of linear equations, among other applications.

For example, this script utilizes determinants to solve a system of linear equations with a matching
number of unknown values using Cramer’s rule. The user-defined solve() function returns an
array containing solutions for each unknown value in the system, where the n-th element of the
array is the determinant of the coefficient matrix with the n-th column replaced by the column of
constants divided by the determinant of the original coefficients.

In this script, we’ve defined the matrix m that holds coefficients and constants for these three
equations:

3 * x0 + 4 * x1 - 1 * x2 = 8
5 * x0 - 2 * x1 + 1 * x2 = 4
2 * x0 - 2 * x1 + 1 * x2 = 1

The solution to this system is (x0 = 1, x1 = 2, x2 = 3). The script calculates these values
from m via m.solve() and plots them on the chart:

//@version=5
indicator("Determinants example", "Cramer's Rule")

//@function Solves a system of linear equations with a matching number of
unknowns using Cramer's rule.
//@param this An augmented matrix containing the coefficients for each
unknown and the results of
// the equations. For example, a row containing the values 2, -1, and 3
represents the equation
// `2 * x0 + (-1) * x1 = 3`, where `x0` and `x1` are the unknown values
in the system.
//@returns An array containing solutions for each variable in the system.
solve(matrix<float> this) =>
 //@variable The coefficient matrix for the system of equations.
 matrix<float> coefficients = this.submatrix(from_column = 0, to_column =
this.columns() - 1)
 //@variable The array of resulting constants for each equation.
 array<float> constants = this.col(this.columns() - 1)
 //@variable An array containing solutions for each unknown in the system.
 array<float> result = array.new<float>()

 //@variable The determinant value of the coefficient matrix.
 float baseDet = coefficients.det()
 matrix<float> modified = na
 for col = 0 to coefficients.columns() - 1
 modified := coefficients.copy()

https://www.tradingview.com/pine-script-reference/v5/#op_array
https://en.wikipedia.org/wiki/Cramer's_rule
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.det
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.inv
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_square
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id33
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.mult
https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#op_array

 modified.add_col(col, constants)
 modified.remove_col(col + 1)

 // Calculate the solution for the column's unknown by dividing the
determinant of `modified` by the `baseDet`.
 result.push(modified.det() / baseDet)

 result

//@variable A 3x4 matrix containing coefficients and results for a system of
three equations.
m = matrix.new<float>()

// Add rows for the following equations:
// Equation 1: 3 * x0 + 4 * x1 - 1 * x2 = 8
// Equation 2: 5 * x0 - 2 * x1 + 1 * x2 = 4
// Equation 3: 2 * x0 - 2 * x1 + 1 * x2 = 1
m.add_row(0, array.from(3.0, 4.0, -1.0, 8.0))
m.add_row(1, array.from(5.0, -2.0, 1.0, 4.0))
m.add_row(2, array.from(2.0, -2.0, 1.0, 1.0))

//@variable An array of solutions to the unknowns in the system of equations
represented by `m`.
solutions = solve(m)

plot(solutions.get(0), "x0", color.red, 3) // Plots 1.
plot(solutions.get(1), "x1", color.green, 3) // Plots 2.
plot(solutions.get(2), "x2", color.blue, 3) // Plots 3.

Note that:
• Solving systems of equations is particularly useful for regression analysis, e.g., linear

and polynomial regression.
• Cramer’s rule works fine for small systems of equations. However, it’s

computationally inefficient on larger systems. Other methods, such as Gaussian
elimination, are often preferred for such use cases.

`matrix.inv()` and `matrix.pinv()`

For any non-singular square matrix, there is an inverse matrix that yields the identity matrix when
multiplied by the original. Inverses have utility in various matrix transformations and solving
systems of equations. Scripts can calculate the inverse of a matrix when one exists via the
matrix.inv() function.

For singular (non-invertible) matrices, one can calculate a generalized inverse (pseudoinverse),
regardless of whether the matrix is square or has a nonzero determinant, via the matrix.pinv()
function. Keep in mind that unlike a true inverse, the product of a pseudoinverse and the original
matrix does not necessarily equal the identity matrix unless the original matrix is invertible.

The following example forms a 2x2 m matrix from user inputs, then uses the m.inv() and m.pinv()
methods to calculate the inverse or pseudoinverse of m. The script displays the original matrix, its
inverse or pseudoinverse, and their product in labels on the chart:

//@version=5
indicator("Inverse example")

// Element inputs for the 2x2 matrix.
float r0c0 = input.float(4.0, "Row 0, Col 0")

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.pinv
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.inv
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.pinv
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.inv
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-matrixcalculations-specialcalculations-matrixmult
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_identity
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_square
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id34
https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Gaussian_elimination

float r0c1 = input.float(3.0, "Row 0, Col 1")
float r1c0 = input.float(2.0, "Row 1, Col 0")
float r1c1 = input.float(1.0, "Row 1, Col 1")

//@function Displays the rows of a matrix in a label with a note.
//@param this The matrix to display.
//@param barIndex The `bar_index` to display the label at.
//@param bgColor The background color of the label.
//@param textColor The color of the label's text.
//@param note The text to display above the rows.
method debugLabel(
 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
 color textColor = color.white, string note = ""
) =>
 labelText = note + "\n" + str.tostring(this)
 if barstate.ishistory
 label.new(
 barIndex, 0, labelText, color = bgColor, style =
label.style_label_center,
 textcolor = textColor, size = size.huge
)

//@variable A 2x2 matrix of input values.
m = matrix.new<float>()

// Add input values to `m`.
m.add_row(0, array.from(r0c0, r0c1))
m.add_row(1, array.from(r1c0, r1c1))

//@variable Is `true` if `m` is square with a nonzero determinant, indicating
invertibility.
bool isInvertible = m.is_square() and m.det()

//@variable The inverse or pseudoinverse of `m`.
mInverse = isInvertible ? m.inv() : m.pinv()

//@variable The product of `m` and `mInverse`. Returns the identity matrix when
`isInvertible` is `true`.
matrix<float> product = m.mult(mInverse)

if bar_index == last_bar_index - 1
 // Display `m`, `mInverse`, and their `product`.
 m.debugLabel(note = "Original")
 mInverse.debugLabel(bar_index + 10, color.purple, note = isInvertible ?
"Inverse" : "Pseudoinverse")
 product.debugLabel(bar_index + 20, color.green, note = "Product")

Note that:
• This script will only call m.inv() when isInvertible is true, i.e., when m is

square and has a nonzero determinant. Otherwise, it uses m.pinv() to calculate the
generalized inverse.

`matrix.rank()`

The rank of a matrix represents the number of linearly independent vectors (rows or columns) it
contains. In essence, matrix rank measures the number of vectors one cannot express as a linear
combination of others, or in other words, the number of vectors that contain unique information.
Scripts can calculate the rank of a matrix via matrix.rank().

This script identifies the number of linearly independent vectors in two 3x3 matrices (m1 and m2)

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rank
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id35
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.pinv
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.det
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_square
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.inv

and plots the values in a separate pane. As we see on the chart, the m1.rank() value is 3 because
each vector is unique. The m2.rank() value, on the other hand, is 1 because it has just one unique
vector:

//@version=5
indicator("Matrix rank example")

//@variable A 3x3 full-rank matrix.
m1 = matrix.new<float>()
//@variable A 3x3 rank-deficient matrix.
m2 = matrix.new<float>()

// Add linearly independent vectors to `m1`.
m1.add_row(0, array.from(3, 2, 3))
m1.add_row(1, array.from(4, 6, 6))
m1.add_row(2, array.from(7, 4, 9))

// Add linearly dependent vectors to `m2`.
m2.add_row(0, array.from(1, 2, 3))
m2.add_row(1, array.from(2, 4, 6))
m2.add_row(2, array.from(3, 6, 9))

// Plot `matrix.rank()` values.
plot(m1.rank(), color = color.green, linewidth = 3)
plot(m2.rank(), color = color.red, linewidth = 3)

Note that:
• The highest rank value a matrix can have is the minimum of its number of rows and

columns. A matrix with the maximum possible rank is known as a full-rank matrix,
and any matrix without full rank is known as a rank-deficient matrix.

• The determinants of full-rank square matrices are nonzero, and such matrices have
inverses. Conversely, the determinant of a rank-deficient matrix is always 0.

• For any matrix that contains nothing but the same value in each of its elements (e.g., a
matrix filled with 0), the rank is always 0 since none of the vectors hold unique
information. For any other matrix with distinct values, the minimum possible rank is 1.

Error handling
In addition to usual compiler errors, which occur during a script’s compilation due to improper
syntax, scripts using matrices can raise specific runtime errors during their execution. When a
script raises a runtime error, it displays a red exclamation point next to the script title. Users can
view the error message by clicking this icon.

In this section, we discuss runtime errors that users may encounter while utilizing matrices in their
scripts.

The row/column index (xx) is out of bounds, row/column size is (yy).

This runtime error occurs when trying to access indices outside the matrix dimensions with
functions including matrix.get(), matrix.set(), matrix.fill(), and matrix.submatrix(), as well as some
of the functions relating to the rows and columns of a matrix.

For example, this code contains two lines that will produce this runtime error. The m.set() method
references a row index that doesn’t exist (2). The m.submatrix() method references all column

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.submatrix
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.set
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-rowsandcolumns
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.submatrix
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.fill
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.set
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.get
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id37
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id36
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.det
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-matrixcalculations-specialcalculations-matrixinvandmatrixpinv
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-matrixcalculations-specialcalculations-matrixdet
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rank
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rank

indices up to to_column - 1. A to_column value of 4 results in a runtime error because the
last column index referenced (3) does not exist in m:

//@version=5
indicator("Out of bounds demo")

//@variable A 2x3 matrix with a max row index of 1 and max column index of 2.
matrix<float> m = matrix.new<float>(2, 3, 0.0)

m.set(row = 2, column = 0, value = 1.0) // The `row` index is out of bounds
on this line. The max value is 1.
m.submatrix(from_column = 1, to_column = 4) // The `to_column` index is invalid
on this line. The max value is 3.

if bar_index == last_bar_index - 1
 label.new(bar_index, 0, str.tostring(m), color = color.navy, textcolor =
color.white, size = size.huge)

Users can avoid this error in their scripts by ensuring their function calls do not reference indices
greater than or equal to the number of rows/columns.

The array size does not match the number of rows/columns in the matrix.

When using matrix.add_row() and matrix.add_col() functions to insert rows and columns into a
non-empty matrix, the size of the inserted array must align with the matrix dimensions. The size of
an inserted row must match the number of columns, and the size of an inserted column must match
the number of rows. Otherwise, the script will raise this runtime error. For example:

//@version=5
indicator("Invalid array size demo")

// Declare an empty matrix.
m = matrix.new<float>()

m.add_col(0, array.from(1, 2)) // Add a column. Changes the shape of `m` to
2x1.
m.add_col(1, array.from(1, 2, 3)) // Raises a runtime error because `m` has 2
rows, not 3.

plot(m.col(0).get(1))

Note that:
• When m is empty, one can insert a row or column array of any size, as shown in the

first m.add_col() line.

Cannot call matrix methods when the ID of matrix is ‘na’.

When a matrix variable is assigned to na, it means that the variable doesn’t reference an existing
object. Consequently, one cannot use built-in matrix.*() functions and methods with it. For
example:

//@version=5
indicator("na matrix methods demo")

//@variable A `matrix` variable assigned to `na`.
matrix<float> m = na

mCopy = m.copy() // Raises a runtime error. You can't copy a matrix that doesn't
exist.

https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id39
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-rowsandcolumns-inserting
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.add_col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.add_row
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id38

if bar_index == last_bar_index - 1
 label.new(bar_index, 0, str.tostring(mCopy), color = color.navy, textcolor =
color.white, size = size.huge)

To resolve this error, assign m to a valid matrix instance before using matrix.*() functions.

Matrix is too large. Maximum size of the matrix is 100,000 elements.

The total number of elements in a matrix (matrix.elements_count()) cannot exceed 100,000,
regardless of its shape. For example, this script will raise an error because it inserts 1000 rows with
101 elements into the m matrix:

//@version=5
indicator("Matrix too large demo")

var matrix<float> m = matrix.new<float>()

if bar_index == 0
 for i = 1 to 1000
 // This raises an error because the script adds 101 elements on each
iteration.
 // 1000 rows * 101 elements per row = 101000 total elements. This is too
large.
 m.add_row(m.rows(), array.new<float>(101, i))

plot(m.get(0, 0))

The row/column index must be 0 <= from_row/column < to_row/column.

When using matrix.*() functions with from_row/column and to_row/column indices,
the from_* values must be less than the corresponding to_* values, with the minimum possible
value being 0. Otherwise, the script will raise a runtime error.

For example, this script shows an attempt to declare a submatrix from a 4x4 m matrix with a
from_row value of 2 and a to_row value of 2, which will result in an error:

//@version=5
indicator("Invalid from_row, to_row demo")

//@variable A 4x4 matrix filled with a random value.
matrix<float> m = matrix.new<float>(4, 4, math.random())

matrix<float> mSub = m.submatrix(from_row = 2, to_row = 2) // Raises an error.
`from_row` can't equal `to_row`.

plot(mSub.get(0, 0))

Matrices ‘id1’ and ‘id2’ must have an equal number of rows and columns to be
added.

When using matrix.sum() and matrix.diff() functions, the id1 and id2 matrices must have the
same number of rows and the same number of columns. Attempting to add or subtract two matrices
with mismatched dimensions will raise an error, as demonstrated by this code:

//@version=5
indicator("Invalid sum dimensions demo")

//@variable A 2x3 matrix.

https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-matrixcalculations-specialcalculations-matrixsumandmatrixdiff
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id42
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id42
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-copyingamatrix-submatrices
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id41
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-rowsandcolumns-inserting
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.elements_count
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id40

matrix<float> m1 = matrix.new<float>(2, 3, 1)
//@variable A 3x4 matrix.
matrix<float> m2 = matrix.new<float>(3, 4, 2)

mSum = matrix.sum(m1, m2) // Raises an error. `m1` and `m2` don't have matching
dimensions.

plot(mSum.get(0, 0))

The number of columns in the ‘id1’ matrix must equal the number of rows in the
matrix (or the number of elements in the array) ‘id2’.

When using matrix.mult() to multiply an id1 matrix by an id2 matrix or array, the matrix.rows()
or array.size() of id2 must equal the matrix.columns() in id1. If they don’t align, the script will
raise this error.

For example, this script tries to multiply two 2x3 matrices. While adding these matrices is possible,
multiplying them is not:

//@version=5
indicator("Invalid mult dimensions demo")

//@variable A 2x3 matrix.
matrix<float> m1 = matrix.new<float>(2, 3, 1)
//@variable A 2x3 matrix.
matrix<float> m2 = matrix.new<float>(2, 3, 2)

mSum = matrix.mult(m1, m2) // Raises an error. The number of columns in `m1` and
rows in `m2` aren't equal.

plot(mSum.get(0, 0))

Operation not available for non-square matrices.

Some matrix operations, including matrix.inv(), matrix.det(), matrix.eigenvalues(), and
matrix.eigenvectors() only work with square matrices, i.e., matrices with the same number of rows
and columns. When attempting to execute such functions on non-square matrices, the script will
raise an error stating the operation isn’t available or that it cannot calculate the result for the matrix
id. For example:

//@version=5
indicator("Non-square demo")

//@variable A 3x5 matrix.
matrix<float> m = matrix.new<float>(3, 5, 1)

plot(m.det()) // Raises a runtime error. You can't calculate the determinant of
a 3x5 matrix.

Maps
• Introduction
• Declaring a map

• Using `var` and `varip` keywords
• Reading and writing

• Putting and getting key-value pairs

https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#putting-and-getting-key-value-pairs
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#reading-and-writing
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#using-var-and-varip-keywords
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#declaring-a-map
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#introduction
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.inv
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.eigenvalues
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.det
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.inv
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id44
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.columns
https://www.tradingview.com/pine-script-reference/v5/#fun_array.size
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rows
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices-matrixcalculations-specialcalculations-matrixmult
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id43
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#id43

• Inspecting keys and values
• `map.keys()` and `map.values()`
• `map.contains()`

• Removing key-value pairs
• Combining maps

• Looping through a map
• Copying a map

• Shallow copies
• Deep copies

• Scope and history
• Maps of other collections

Note

This page contains advanced material. If you are a beginning Pine Script® programmer, we
recommend you become familiar with other, more accessible Pine Script® features before you
venture here.

Introduction
Pine Script® Maps are collections that store elements in key-value pairs. They allow scripts to
collect multiple value references associated with unique identifiers (keys).

Unlike arrays and matrices, maps are considered unordered collections. Scripts quickly access a
map’s values by referencing the keys from the key-value pairs put into them rather than traversing
an internal index.

A map’s keys can be of any fundamental type, and its values can be of any built-in or user-defined
type. Maps cannot directly use other collections (maps, arrays, or matrices) as values, but they can
hold UDT instances containing these data structures within their fields. See this section for more
information.

As with other collections, maps can contain up to 100,000 elements in total. Since each key-value
pair in a map consists of two elements (a unique key and its associated value), the maximum
number of key-value pairs a map can hold is 50,000.

Declaring a map
Pine Script® uses the following syntax to declare maps:

[var/varip][map<keyType, valueType>]<identifier> = <expression>

Where <keyType, valueType> is the map’s type template that declares the types of keys and
values it will contain, and the <expression> returns either a map instance or na.

When declaring a map variable assigned to na, users must include the map keyword followed by a
type template to tell the compiler that the variable can accept maps with keyType keys and
valueType values.

For example, this line of code declares a new myMap variable that can accept map instances
holding pairs of string keys and float values:

map<string, float> myMap = na

When the <expression> is not na, the compiler does not require explicit type declaration, as it

https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-typetemplates
https://www.tradingview.com/pine-script-reference/v5/#type_map
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-typetemplates
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps-mapsofothercollections
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#maps-of-other-collections
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#scope-and-history
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#deep-copies
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#shallow-copies
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#copying-a-map
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#looping-through-a-map
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#combining-maps
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#removing-key-value-pairs
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#map-contains
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#map-keys-and-map-values
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#inspecting-keys-and-values

will infer the type information from the assigned map object.

This line declares a myMap variable assigned to an empty map with string keys and float values.
Any maps assigned to this variable later must have the same key and value types:

myMap = map.new<string, float>()

Using `var` and `varip` keywords

Users can include the var or varip keywords to instruct their scripts to declare map variables only on
the first chart bar. Variables that use these keywords point to the same map instances on each script
iteration until explicitly reassigned.

For example, this script declares a colorMap variable assigned to a map that holds pairs of string
keys and color values on the first chart bar. The script displays an oscillator on the chart and
uses the values it put into the colorMap on the first bar to color the plots on all bars:

//@version=5
indicator("var map demo")

//@variable A map associating color values with string keys.
var colorMap = map.new<string, color>()

// Put `<string, color>` pairs into `colorMap` on the first bar.
if bar_index == 0
 colorMap.put("Bull", color.green)
 colorMap.put("Bear", color.red)
 colorMap.put("Neutral", color.gray)

//@variable The 14-bar RSI of `close`.
float oscillator = ta.rsi(close, 14)

//@variable The color of the `oscillator`.
color oscColor = switch
 oscillator > 50 => colorMap.get("Bull")
 oscillator < 50 => colorMap.get("Bear")
 => colorMap.get("Neutral")

// Plot the `oscillator` using the `oscColor` from our `colorMap`.
plot(oscillator, "Histogram", oscColor, 2, plot.style_histogram, histbase = 50)
plot(oscillator, "Line", oscColor, 3)

Note

Map variables declared using varip behave as ones using var on historical data, but they update their
key-value pairs for realtime bars (i.e., the bars since the script’s last compilation) on each new price
tick. Maps assigned to varip variables can only hold values of int, float, bool, color, or string types
or user-defined types that exclusively contain within their fields these types or collections (arrays,
matrices, or maps) of these types.

Reading and writing

Putting and getting key-value pairs

The map.put() function is one that map users will utilize quite often, as it’s the primary method to

https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#id4
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#type_color
https://www.tradingview.com/pine-script-reference/v5/#type_bool
https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#type_int
https://www.tradingview.com/pine-script-reference/v5/#kw_varip
https://www.tradingview.com/pine-script-reference/v5/#kw_var
https://www.tradingview.com/pine-script-reference/v5/#kw_varip
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-reference/v5/#type_color
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#kw_varip
https://www.tradingview.com/pine-script-reference/v5/#kw_var
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#id3
https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#type_string

put a new key-value pair into a map. It associates the key argument with the value argument in
the call and adds the pair to the map id.

If the key argument in the map.put() call already exists in the map’s keys, the new pair passed into
the function will replace the existing one.

To retrieve the value from a map id associated with a given key, use map.get(). This function
returns the value if the id map contains the key. Otherwise, it returns na.

The following example calculates the difference between the bar_index values from when close was
last rising and falling over a given length with the help of map.put() and map.get() methods. The
script puts a ("Rising", bar_index) pair into the data map when the price is rising and
puts a ("Falling", bar_index) pair into the map when the price is falling. It then puts a
pair containing the “Difference” between the “Rising” and “Falling” values into the map and plots
its value on the chart:

//@version=5
indicator("Putting and getting demo")

//@variable The length of the `ta.rising()` and `ta.falling()` calculation.
int length = input.int(2, "Length")

//@variable A map associating `string` keys with `int` values.
var data = map.new<string, int>()

// Put a new ("Rising", `bar_index`) pair into the `data` map when `close` is
rising.
if ta.rising(close, length)
 data.put("Rising", bar_index)
// Put a new ("Falling", `bar_index`) pair into the `data` map when `close` is
falling.
if ta.falling(close, length)
 data.put("Falling", bar_index)

// Put the "Difference" between current "Rising" and "Falling" values into the
`data` map.
data.put("Difference", data.get("Rising") - data.get("Falling"))

//@variable The difference between the last "Rising" and "Falling" `bar_index`.
int index = data.get("Difference")

//@variable Returns `color.green` when `index` is positive, `color.red` when
negative, and `color.gray` otherwise.
color indexColor = index > 0 ? color.green : index < 0 ? color.red : color.gray

plot(index, color = indexColor, style = plot.style_columns)

Note that:
• This script replaces the values associated with the “Rising”, “Falling”, and

“Difference” keys on successive data.put() calls, as each of these keys is unique and
can only appear once in the data map.

• Replacing the pairs in a map does not change the internal insertion order of its keys.
We discuss this further in the next section.

Similar to working with other collections, when putting a value of a special type (line, linefill, label,
box, or table) or a user-defined type into a map, it’s important to note the inserted pair’s value

https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_linefill
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps-readingandwriting-inspectingkeysandvalues
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-reference/v5/#fun_map.get
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.falling
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.rising
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_map.contains
https://www.tradingview.com/pine-script-reference/v5/#fun_map.get
https://www.tradingview.com/pine-script-reference/v5/#fun_map.keys
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put

points to that same object without copying it. Modifying the value referenced by a key-value pair
will also affect the original object.

For example, this script contains a custom ChartData type with o, h, l, and c fields. On the first
chart bar, the script declares a myMap variable and adds the pair ("A", myData), where
myData is a ChartData instance with initial field values of na. It adds the pair ("B",
myData) to myMap and updates the object from this pair on every bar via the user-defined
update() method.

Each change to the object with the “B” key affects the one referenced by the “A” key, as shown by
the candle plot of the “A” object’s fields:

//@version=5
indicator("Putting and getting objects demo")

//@type A custom type to hold OHLC data.
type ChartData
 float o
 float h
 float l
 float c

//@function Updates the fields of a `ChartData` object.
method update(ChartData this) =>
 this.o := open
 this.h := high
 this.l := low
 this.c := close

//@variable A new `ChartData` instance declared on the first bar.
var myData = ChartData.new()
//@variable A map associating `string` keys with `ChartData` instances.
var myMap = map.new<string, ChartData>()

// Put a new pair with the "A" key into `myMap` only on the first bar.
if bar_index == 0
 myMap.put("A", myData)

// Put a pair with the "B" key into `myMap` on every bar.
myMap.put("B", myData)

//@variable The `ChartData` value associated with the "A" key in `myMap`.
ChartData oldest = myMap.get("A")
//@variable The `ChartData` value associated with the "B" key in `myMap`.
ChartData newest = myMap.get("B")

// Update `newest`. Also affects `oldest` and `myData` since they all reference
the same `ChartData` object.
newest.update()

// Plot the fields of `oldest` as candles.
plotcandle(oldest.o, oldest.h, oldest.l, oldest.c)

Note that:
• This script would behave differently if it passed a copy of myData into each

myMap.put() call. For more information, see this section of our User Manual’s page
on objects.

https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#pageobjects
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#pageobjects-copyingobjects
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put

Inspecting keys and values

`map.keys()` and `map.values()`

To retrieve all keys and values put into a map, use map.keys() and map.values(). These functions
copy all key/value references within a map id to a new array object. Modifying the array returned
from either of these functions does not affect the id map.

Although maps are unordered collections, Pine Script® internally maintains the insertion order of a
map’s key-value pairs. As a result, the map.keys() and map.values() functions always return arrays
with their elements ordered based on the id map’s insertion order.

The script below demonstrates this by displaying the key and value arrays from an m map in a label
once every 50 bars. As we see on the chart, the order of elements in each array returned by
m.keys() and m.values() aligns with the insertion order of the key-value pairs in m:

//@version=5
indicator("Keys and values demo")

if bar_index % 50 == 0
 //@variable A map containing pairs of `string` keys and `float` values.
 m = map.new<string, float>()

 // Put pairs into `m`. The map will maintain this insertion order.
 m.put("First", math.round(math.random(0, 100)))
 m.put("Second", m.get("First") + 1)
 m.put("Third", m.get("Second") + 1)

 //@variable An array containing the keys of `m` in their insertion order.
 array<string> keys = m.keys()
 //@variable An array containing the values of `m` in their insertion order.
 array<float> values = m.values()

 //@variable A label displaying the `size` of `m` and the `keys` and `values`
arrays.
 label debugLabel = label.new(
 bar_index, 0,
 str.format("Pairs: {0}\nKeys: {1}\nValues: {2}", m.size(), keys,
values),
 color = color.navy, style = label.style_label_center,
 textcolor = color.white, size = size.huge
)

Note that:
• The value with the “First” key is a random whole number between 0 and 100. The

“Second” value is one greater than the “First”, and the “Third” value is one greater
than the “Second”.

It’s important to note a map’s internal insertion order does not change when replacing its key-value
pairs. The locations of the new elements in the keys() and values() arrays will be the same as the old
elements in such cases. The only exception is if the script completely removes the key beforehand.

Below, we’ve added a line of code to put a new value with the “Second” key into the m map,
overwriting the previous value associated with that key. Although the script puts this new pair into
the map after the one with the “Third” key, the pair’s key and value are still second in the keys and
values arrays since the key was already present in m before the change:

https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps-readingandwriting-removingkeyvaluepairs
https://www.tradingview.com/pine-script-reference/v5/#fun_map.values
https://www.tradingview.com/pine-script-reference/v5/#fun_map.keys
https://www.tradingview.com/pine-script-reference/v5/#fun_math.random
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays
https://www.tradingview.com/pine-script-reference/v5/#fun_map.values
https://www.tradingview.com/pine-script-reference/v5/#fun_map.keys
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_map.values
https://www.tradingview.com/pine-script-reference/v5/#fun_map.keys
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#id7
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#id6

//@version=5
indicator("Keys and values demo")

if bar_index % 50 == 0
 //@variable A map containing pairs of `string` keys and `float` values.
 m = map.new<string, float>()

 // Put pairs into `m`. The map will maintain this insertion order.
 m.put("First", math.round(math.random(0, 100)))
 m.put("Second", m.get("First") + 1)
 m.put("Third", m.get("Second") + 1)

 // Overwrite the "Second" pair in `m`. This will NOT affect the insertion
order.
 // The key and value will still appear second in the `keys` and `values`
arrays.
 m.put("Second", -2)

 //@variable An array containing the keys of `m` in their insertion order.
 array<string> keys = m.keys()
 //@variable An array containing the values of `m` in their insertion order.
 array<float> values = m.values()

 //@variable A label displaying the `size` of `m` and the `keys` and `values`
arrays.
 label debugLabel = label.new(
 bar_index, 0,
 str.format("Pairs: {0}\nKeys: {1}\nValues: {2}", m.size(), keys,
values),
 color = color.navy, style = label.style_label_center,
 textcolor = color.white, size = size.huge
)

Note

The elements in a map.values() array point to the same values as the map id. Consequently, when
the map’s values are of reference types, including line, linefill, label, box, table, or UDTs,
modifying the instances referenced by the map.values() array will also affect those referenced by
the map id since the contents of both collections point to identical objects.

`map.contains()`

To check if a specific key exists within a map id, use map.contains(). This function is a
convenient alternative to calling array.includes() on the array returned from map.keys().

For example, this script checks if various keys exist within an m map, then displays the results in a
label:

https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#fun_map.keys
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_array.includes
https://www.tradingview.com/pine-script-reference/v5/#fun_map.contains
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#id8
https://www.tradingview.com/pine-script-reference/v5/#fun_map.values
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_linefill
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#fun_map.values

//@version=5
indicator("Inspecting keys demo")

//@variable A map containing `string` keys and `string` values.
m = map.new<string, string>()

// Put key-value pairs into the map.
m.put("A", "B")
m.put("C", "D")
m.put("E", "F")

//@variable An array of keys to check for in `m`.
array<string> testKeys = array.from("A", "B", "C", "D", "E", "F")

//@variable An array containing all elements from `testKeys` found in the keys
of `m`.
array<string> mappedKeys = array.new<string>()

for key in testKeys
 // Add the `key` to `mappedKeys` if `m` contains it.
 if m.contains(key)
 mappedKeys.push(key)

//@variable A string representing the `testKeys` array and the elements found
within the keys of `m`.
string testText = str.format("Tested keys: {0}\nKeys found: {1}", testKeys,
mappedKeys)

if bar_index == last_bar_index - 1
 //@variable Displays the `testText` in a label at the `bar_index` before the
last.
 label debugLabel = label.new(
 bar_index, 0, testText, style = label.style_label_center,
 textcolor = color.white, size = size.huge
)

Removing key-value pairs

To remove a specific key-value pair from a map id, use map.remove(). This function removes the
key and its associated value from the map while preserving the insertion order of other key-value
pairs. It returns the removed value if the map contained the key. Otherwise, it returns na.

To remove all key-value pairs from a map id at once, use map.clear().

https://www.tradingview.com/pine-script-reference/v5/#fun_map.clear
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps-readingandwriting-inspectingkeysandvalues-mapcontains
https://www.tradingview.com/pine-script-reference/v5/#fun_map.remove
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#id9

The following script creates a new m map, puts key-value pairs into the map, uses m.remove()
within a loop to remove each valid key listed in the removeKeys array, then calls m.clear() to
remove all remaining key-value pairs. It uses a custom debugLabel() method to display the
size, keys, and values of m after each change:

//@version=5
indicator("Removing key-value pairs demo")

//@function Returns a label to display the keys and values from a map.
method debugLabel(
 map<string, int> this, int barIndex = bar_index,
 color bgColor = color.blue, string note = ""
) =>
 //@variable A string representing the size, keys, and values in `this` map.
 string repr = str.format(
 "{0}\nSize: {1}\nKeys: {2}\nValues: {3}",
 note, this.size(), str.tostring(this.keys()),
str.tostring(this.values())
)
 label.new(
 barIndex, 0, repr, color = bgColor, style = label.style_label_center,
 textcolor = color.white, size = size.huge
)

if bar_index == last_bar_index - 1
 //@variable A map containing `string` keys and `int` values.
 m = map.new<string, int>()

 // Put key-value pairs into `m`.
 for [i, key] in array.from("A", "B", "C", "D", "E")
 m.put(key, i)
 m.debugLabel(bar_index, color.green, "Added pairs")

 //@variable An array of keys to remove from `m`.
 array<string> removeKeys = array.from("B", "B", "D", "F", "a")

 // Remove each `key` in `removeKeys` from `m`.
 for key in removeKeys
 m.remove(key)
 m.debugLabel(bar_index + 10, color.red, "Removed pairs")

 // Remove all remaining keys from `m`.
 m.clear()
 m.debugLabel(bar_index + 20, color.purple, "Cleared the map")

Note that:
• Not all strings in the removeKeys array were present in the keys of m. Attempting to

remove non-existent keys (“F”, “a”, and the second “B” in this example) has no effect
on a map’s contents.

Combining maps

Scripts can combine two maps via map.put_all(). This function puts all key-value pairs from the
id2 map, in their insertion order, into the id1 map. As with map.put(), if any keys in id2 are also
present in id1, this function replaces the key-value pairs that contain those keys without affecting
their initial insertion order.

https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put_all
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#id10
https://www.tradingview.com/pine-script-reference/v5/#fun_map.values
https://www.tradingview.com/pine-script-reference/v5/#fun_map.keys
https://www.tradingview.com/pine-script-reference/v5/#fun_map.size
https://www.tradingview.com/pine-script-reference/v5/#fun_map.clear
https://www.tradingview.com/pine-script-reference/v5/#fun_map.remove
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps-readingandwriting-puttingandgettingkeyvaluepairs

This example contains a user-defined hexMap() function that maps decimal int keys to string
representations of their hexadecimal forms. The script uses this function to create two maps, mapA
and mapB, then uses mapA.put_all(mapB) to put all key-value pairs from mapB into mapA.

The script uses a custom debugLabel() function to display labels showing the keys and values
of mapA and mapB, then another label displaying the contents of mapA after putting all key-value
pairs from mapB into it:

//@version=5
indicator("Combining maps demo", "Hex map")

//@variable An array of string hex digits.
var array<string> hexDigits = str.split("0123456789ABCDEF", "")

//@function Returns a hexadecimal string for the specified `value`.
hex(int value) =>
 //@variable A string representing the hex form of the `value`.
 string result = ""
 //@variable A temporary value for digit calculation.
 int tempValue = value
 while tempValue > 0
 //@variable The next integer digit.
 int digit = tempValue % 16
 // Add the hex form of the `digit` to the `result`.
 result := hexDigits.get(digit) + result
 // Divide the `tempValue` by the base.
 tempValue := int(tempValue / 16)
 result

//@function Returns a map holding the `numbers` as keys and their `hex` strings
as values.
hexMap(array<int> numbers) =>
 //@variable A map associating `int` keys with `string` values.
 result = map.new<int, string>()
 for number in numbers
 // Put a pair containing the `number` and its `hex()` representation
into the `result`.
 result.put(number, hex(number))

https://www.tradingview.com/pine-script-reference/v5/#fun_map.values
https://www.tradingview.com/pine-script-reference/v5/#fun_map.keys
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put_all
https://en.wikipedia.org//wiki/Hexadecimal
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#type_int

 result

//@function Returns a label to display the keys and values of a hex map.
debugLabel(
 map<int, string> this, int barIndex = bar_index, color bgColor =
color.blue,
 string style = label.style_label_center, string note = ""
) =>
 string repr = str.format(
 "{0}\nDecimal: {1}\nHex: {2}",
 note, str.tostring(this.keys()), str.tostring(this.values())
)
 label.new(
 barIndex, 0, repr, color = bgColor, style = style,
 textcolor = color.white, size = size.huge
)

if bar_index == last_bar_index - 1
 //@variable A map with decimal `int` keys and hexadecimal `string` values.
 map<int, string> mapA = hexMap(array.from(101, 202, 303, 404))
 debugLabel(mapA, bar_index, color.navy, label.style_label_down, "A")

 //@variable A map containing key-value pairs to add to `mapA`.
 map<int, string> mapB = hexMap(array.from(303, 404, 505, 606, 707, 808))
 debugLabel(mapB, bar_index, color.maroon, label.style_label_up, "B")

 // Put all pairs from `mapB` into `mapA`.
 mapA.put_all(mapB)
 debugLabel(mapA, bar_index + 10, color.purple, note = "Merge B into A")

Looping through a map
There are several ways scripts can iteratively access the keys and values in a map. For example, one
could loop through a map’s keys() array and get() the value for each key, like so:

for key in thisMap.keys()
 value = thisMap.get(key)

However, we recommend using a for...in loop directly on a map, as it iterates over the map’s
key-value pairs in their insertion order, returning a tuple containing the next pair’s key and value on
each iteration.

For example, this line of code loops through each key and value in thisMap, starting from the
first key-value pair put into it:

for [key, value] in thisMap

Let’s use this structure to write a script that displays a map’s key-value pairs in a table. In the
example below, we’ve defined a custom toTable() method that creates a table, then uses a
for...in loop to iterate over the map’s key-value pairs and populate the table’s cells. The script
uses this method to visualize a map containing length-bar averages of price and volume data:

//@version=5
indicator("Looping through a map demo", "Table of averages")

//@variable The length of the moving average.
int length = input.int(20, "Length")

https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#fun_map.get
https://www.tradingview.com/pine-script-reference/v5/#fun_map.keys
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#id11

//@variable The size of the table text.
string txtSize = input.string(
 size.huge, "Text size",
 options = [size.auto, size.tiny, size.small, size.normal, size.large,
size.huge]
)

//@function Displays the pairs of `this` map within a table.
//@param this A map with `string` keys and `float` values.
//@param position The position of the table on the chart.
//@param header The string to display on the top row of the table.
//@param textSize The size of the text in the table.
//@returns A new `table` object with cells displaying each pair in `this`.
method toTable(
 map<string, float> this, string position = position.middle_center, string
header = na,
 string textSize = size.huge
) =>
 // Color variables
 borderColor = #000000
 headerColor = color.rgb(1, 88, 80)
 pairColor = color.maroon
 textColor = color.white

 //@variable A table that displays the key-value pairs of `this` map.
 table result = table.new(
 position, this.size() + 1, 3, border_width = 2, border_color =
borderColor
)
 // Initialize top and side header cells.
 result.cell(1, 0, header, bgcolor = headerColor, text_color = textColor,
text_size = textSize)
 result.merge_cells(1, 0, this.size(), 0)
 result.cell(0, 1, "Key", bgcolor = headerColor, text_color = textColor,
text_size = textSize)
 result.cell(0, 2, "Value", bgcolor = headerColor, text_color = textColor,
text_size = textSize)

 //@variable The column index of the table. Updates on each loop iteration.
 int col = 1

 // Loop over each `key` and `value` from `this` map in the insertion order.
 for [key, value] in this
 // Initialize a `key` cell in the `result` table on row 1.
 result.cell(
 col, 1, str.tostring(key), bgcolor = color.maroon,
 text_color = color.white, text_size = textSize
)
 // Initialize a `value` cell in the `result` table on row 2.
 result.cell(
 col, 2, str.tostring(value), bgcolor = color.maroon,
 text_color = color.white, text_size = textSize
)
 // Move to the next column index.
 col += 1
 result // Return the `result` table.

//@variable A map with `string` keys and `float` values to hold `length`-bar
averages.
averages = map.new<string, float>()

// Put key-value pairs into the `averages` map.
averages.put("Open", ta.sma(open, length))
averages.put("High", ta.sma(high, length))

averages.put("Low", ta.sma(low, length))
averages.put("Close", ta.sma(close, length))
averages.put("Volume", ta.sma(volume, length))

//@variable The text to display at the top of the table.
string headerText = str.format("{0} {1}-bar averages", "'" + syminfo.tickerid +
"'", length)
// Display the `averages` map in a `table` with the `headerText`.
averages.toTable(header = headerText, textSize = txtSize)

Copying a map

Shallow copies

Scripts can make a shallow copy of a map id using the map.copy() function. Modifications to a
shallow copy do not affect the original id map or its internal insertion order.

For example, this script constructs an m map with the keys “A”, “B”, “C”, and “D” assigned to four
random values between 0 and 10. It then creates an mCopy map as a shallow copy of m and updates
the values associated with its keys. The script displays the key-value pairs in m and mCopy on the
chart using our custom debugLabel() method:

//@version=5
indicator("Shallow copy demo")

//@function Displays the key-value pairs of `this` map in a label.
method debugLabel(
 map<string, float> this, int barIndex = bar_index, color bgColor =
color.blue,
 color textColor = color.white, string note = ""
) =>
 //@variable The text to display in the label.
 labelText = note + "\n{"
 for [key, value] in this
 labelText += str.format("{0}: {1}, ", key, value)
 labelText := str.replace(labelText, ", ", "}", this.size() - 1)

 if barstate.ishistory
 label result = label.new(
 barIndex, 0, labelText, color = bgColor, style =
label.style_label_center,
 textcolor = textColor, size = size.huge
)

if bar_index == last_bar_index - 1
 //@variable A map of `string` keys and random `float` values.
 m = map.new<string, float>()

 // Assign random values to an array of keys in `m`.
 for key in array.from("A", "B", "C", "D")
 m.put(key, math.random(0, 10))

 //@variable A shallow copy of `m`.
 mCopy = m.copy()

 // Assign the insertion order value `i` to each `key` in `mCopy`.
 for [i, key] in mCopy.keys()

https://www.tradingview.com/pine-script-reference/v5/#fun_math.random
https://www.tradingview.com/pine-script-reference/v5/#fun_map.copy
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#id13
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#id12

 mCopy.put(key, i)

 // Display the labels.
 m.debugLabel(bar_index, note = "Original")
 mCopy.debugLabel(bar_index + 10, color.purple, note = "Copied and changed")

Deep copies

While a shallow copy will suffice when copying maps that have values of a fundamental type, it’s
important to remember that shallow copies of a map holding values of a reference type (line, linefill,
label, box, table, or a UDT) point to the same objects as the original. Modifying the objects
referenced by a shallow copy will affect the instances referenced by the original map and vice
versa.

To ensure changes to objects referenced by a copied map do not affect instances referenced in other
locations, one can make a deep copy by creating a new map with key-value pairs containing copies
of each value in the original map.

This example creates an original map of string keys and label values and puts a key-value pair
into it. The script copies the map to a shallow variable via the built-in copy() method, then to a
deep variable using a custom deepCopy() method.

As we see from the chart, changes to the label retrieved from the shallow copy also affect the
instance referenced by the original map, but changes to the one from the deep copy do not:

//@version=5
indicator("Deep copy demo")

//@function Returns a deep copy of `this` map.
method deepCopy(map<string, label> this) =>
 //@variable A deep copy of `this` map.
 result = map.new<string, label>()
 // Add key-value pairs with copies of each `value` to the `result`.
 for [key, value] in this
 result.put(key, value.copy())
 result //Return the `result`.

//@variable A map containing `string` keys and `label` values.
var original = map.new<string, label>()

if bar_index == last_bar_index - 1
 // Put a new key-value pair into the `original` map.
 map.put(
 original, "Test",
 label.new(bar_index, 0, "Original", textcolor = color.white, size =
size.huge)
)

 //@variable A shallow copy of the `original` map.
 map<string, label> shallow = original.copy()
 //@variable A deep copy of the `original` map.
 map<string, label> deep = original.deepCopy()

 //@variable The "Test" label from the `shallow` copy.
 label shallowLabel = shallow.get("Test")
 //@variable The "Test" label from the `deep` copy.
 label deepLabel = deep.get("Test")

https://www.tradingview.com/pine-script-reference/v5/#fun_map.copy
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_linefill
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps-copyingamap-shallowcopies
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#id14

 // Modify the "Test" label's `y` attribute in the `original` map.
 // This also affects the `shallowLabel`.
 original.get("Test").set_y(label.all.size())

 // Modify the `shallowLabel`. Also modifies the "Test" label in the
`original` map.
 shallowLabel.set_text("Shallow copy")
 shallowLabel.set_color(color.red)
 shallowLabel.set_style(label.style_label_up)

 // Modify the `deepLabel`. Does not modify any other label instance.
 deepLabel.set_text("Deep copy")
 deepLabel.set_color(color.navy)
 deepLabel.set_style(label.style_label_left)
 deepLabel.set_x(bar_index + 5)

Note that:
• The deepCopy() method loops through the original map, copying each value

and putting key-value pairs containing the copies into a new map instance.

Scope and history
As with other collections in Pine, map variables leave historical trails on each bar, allowing a script
to access past map instances assigned to a variable using the history-referencing operator []. Scripts
can also assign maps to global variables and interact with them from the scopes of functions,
methods, and conditional structures.

As an example, this script uses a global map and its history to calculate an aggregate set of EMAs.
It declares a globalData map of int keys and float values, where each key in the map
corresponds to the length of each EMA calculation. The user-defined update() function
calculates each key-length EMA by mixing the values from the previous map assigned to
globalData with the current source value.

The script plots the maximum and minimum values in the global map’s values() array and the value
from globalData.get(50) (i.e., the 50-bar EMA):

//@version=5
indicator("Scope and history demo", overlay = true)

//@variable The source value for EMA calculation.
float source = input.source(close, "Source")

//@variable A map containing global key-value pairs.
globalData = map.new<int, float>()

//@function Calculates a set of EMAs and updates the key-value pairs in
`globalData`.
update() =>
 //@variable The previous map instance assigned to `globalData`.
 map<int, float> previous = globalData[1]

 // Put key-value pairs with keys 10-200 into `globalData` if `previous` is
`na`.
 if na(previous)
 for i = 10 to 200
 globalData.put(i, source)

https://www.tradingview.com/pine-script-reference/v5/#fun_map.values
https://www.tradingview.com/pine-script-reference/v5/#fun_array.min
https://www.tradingview.com/pine-script-reference/v5/#fun_array.max
https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#type_int
https://www.tradingview.com/support/solutions/43000592270/
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#pageconditionalstructures
https://www.tradingview.com/pine-script-docs/en/v5/language/Methods.html#pagemethods
https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#pageuserdefinedfunctions
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#id15
https://www.tradingview.com/pine-script-reference/v5/#fun_map.new%3Ctype,type%3E
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps-readingandwriting-puttingandgettingkeyvaluepairs

 else
 // Iterate each `key` and `value` in the `previous` map.
 for [key, value] in previous
 //@variable The smoothing parameter for the `key`-length EMA.
 float alpha = 2.0 / (key + 1.0)
 //@variable The `key`-length EMA value.
 float ema = (1.0 - alpha) * value + alpha * source
 // Put the `key`-length `ema` into the `globalData` map.
 globalData.put(key, ema)

// Update the `globalData` map.
update()

//@variable The array of values from `globalData` in their insertion order.
array<float> values = globalData.values()

// Plot the max EMA, min EMA, and 50-bar EMA values.
plot(values.max(), "Max EMA", color.green, 2)
plot(values.min(), "Min EMA", color.red, 2)
plot(globalData.get(50), "50-bar EMA", color.orange, 3)

Maps of other collections
Maps cannot directly use other maps, arrays, or matrices as values, but they can hold values of a
user-defined type that contains collections within its fields.

For example, suppose we want to create a “2D” map that uses string keys to access nested maps that
hold pairs of string keys and float values. Since maps cannot use other collections as values, we will
first create a wrapper type with a field to hold a map<string, float> instance, like so:

//@type A wrapper type for maps with `string` keys and `float` values.
type Wrapper
 map<string, float> data

With our Wrapper type defined, we can create maps of string keys and Wrapper values, where
the data field of each value in the map points to a map<string, float> instance:

mapOfMaps = map.new<string, Wrapper>()

The script below uses this concept to construct a map containing maps that hold OHLCV data
requested from multiple tickers. The user-defined requestData() function requests price and
volume data from a ticker, creates a <string, float> map, puts the data into it, then returns a
Wrapper instance containing the new map.

The script puts the results from each call to requestData() into the mapOfMaps, then creates
a string representation of the nested maps with a user-defined toString() method, which it
displays on the chart in a label:

//@version=5
indicator("Nested map demo")

//@variable The timeframe of the requested data.
string tf = input.timeframe("D", "Timeframe")
// Symbol inputs.
string symbol1 = input.symbol("EURUSD", "Symbol 1")
string symbol2 = input.symbol("GBPUSD", "Symbol 2")
string symbol3 = input.symbol("EURGBP", "Symbol 3")

https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#id16

//@type A wrapper type for maps with `string` keys and `float` values.
type Wrapper
 map<string, float> data

//@function Returns a wrapped map containing OHLCV data from the `tickerID` at
the `timeframe`.
requestData(string tickerID, string timeframe) =>
 // Request a tuple of OHLCV values from the specified ticker and timeframe.
 [o, h, l, c, v] = request.security(
 tickerID, timeframe,
 [open, high, low, close, volume]
)
 //@variable A map containing requested OHLCV data.
 result = map.new<string, float>()
 // Put key-value pairs into the `result`.
 result.put("Open", o)
 result.put("High", h)
 result.put("Low", l)
 result.put("Close", c)
 result.put("Volume", v)
 //Return the wrapped `result`.
 Wrapper.new(result)

//@function Returns a string representing `this` map of `string` keys and
`Wrapper` values.
method toString(map<string, Wrapper> this) =>
 //@variable A string representation of `this` map.
 string result = "{"

 // Iterate over each `key1` and associated `wrapper` in `this`.
 for [key1, wrapper] in this
 // Add `key1` to the `result`.
 result += key1

 //@variable A string representation of the `wrapper.data` map.
 string innerStr = ": {"
 // Iterate over each `key2` and associated `value` in the wrapped map.
 for [key2, value] in wrapper.data
 // Add the key-value pair's representation to `innerStr`.
 innerStr += str.format("{0}: {1}, ", key2, str.tostring(value))

 // Replace the end of `innerStr` with "}" and add to `result`.
 result += str.replace(innerStr, ", ", "},\n", wrapper.data.size() - 1)

 // Replace the blank line at the end of `result` with "}".
 result := str.replace(result, ",\n", "}", this.size() - 1)
 result

//@variable A map of wrapped maps containing OHLCV data from multiple tickers.
var mapOfMaps = map.new<string, Wrapper>()

//@variable A label showing the contents of the `mapOfMaps`.
var debugLabel = label.new(
 bar_index, 0, color = color.navy, textcolor = color.white, size =
size.huge,
 style = label.style_label_center, text_font_family = font.family_monospace
)

// Put wrapped maps into `mapOfMaps`.
mapOfMaps.put(symbol1, requestData(symbol1, tf))
mapOfMaps.put(symbol2, requestData(symbol2, tf))
mapOfMaps.put(symbol3, requestData(symbol3, tf))

// Update the label.
debugLabel.set_text(mapOfMaps.toString())
debugLabel.set_x(bar_index)

Alerts
• Introduction

• Background
• Which type of alert is best?

• Script alerts
• `alert()` function events

• Using all `alert()` calls
• Using selective `alert()` calls
• In strategies

• Order fill events
• `alertcondition()` events

• Using one condition
• Using compound conditions
• Placeholders

• Avoiding repainting with alerts

Introduction
TradingView alerts run 24x7 on our servers and do not require users to be logged in to execute.
Alerts are created from the charts user interface (UI). You will find all the information necessary to
understand how alerts work and how to create them from the charts UI in the Help Center’s About
TradingView alerts page.

Some of the alert types available on TradingView (generic alerts, drawing alerts and script alerts
on order fill events) are created from symbols or scripts loaded on the chart and do not require
specific coding. Any user can create these types of alerts from the charts UI.

Other types of alerts (script alerts triggering on alert() function calls, and alertcondition() alerts)
require specific Pine Script® code to be present in a script to create an alert event before script users
can create alerts from them using the charts UI. Additionally, while script users can create script
alerts triggering on order fill events from the charts UI on any strategy loaded on their chart,
Programmers can specify explicit order fill alert messages in their script for each type of order filled
by the broker emulator.

This page covers the different ways Pine Script® programmers can code their scripts to create alert
events from which script users will in turn be able to create alerts from the charts UI. We will cover:

• How to use the alert() function to alert() function calls in indicators or strategies, which can
then be included in script alerts created from the charts UI.

• How to add custom alert messages to be included in script alerts triggering on the order fill
events of strategies.

• How to use the alertcondition() function to generate, in indicators only, alertcondition()
events which can then be used to create alertcondition() alerts from the charts UI.

Keep in mind that:

• No alert-related Pine Script® code can create a running alert in the charts UI; it merely

https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/support/solutions/43000520149
https://www.tradingview.com/support/solutions/43000520149
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#avoiding-repainting-with-alerts
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#placeholders
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#using-compound-conditions
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#using-one-condition
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#alertcondition-events
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#order-fill-events
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#in-strategies
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#using-selective-alert-calls
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#using-all-alert-calls
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#alert-function-events
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#script-alerts
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#which-type-of-alert-is-best
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#background
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#introduction

creates alert events which can then be used by script users to create running alerts from the
charts UI.

• Alerts only trigger in the realtime bar. The operational scope of Pine Script® code dealing
with any type of alert is therefore restricted to realtime bars only.

• When an alert is created in the charts UI, TradingView saves a mirror image of the script and
its inputs, along with the chart’s main symbol and timeframe to run the alert on its servers.
Subsequent changes to your script’s inputs or the chart will thus not affect running alerts
previously created from them. If you want any changes to your context to be reflected in a
running alert’s behavior, you will need to delete the alert and create a new one in the new
context.

Background

The different methods Pine programmers can use today to create alert events in their script are the
result of successive enhancements deployed throughout Pine Script®’s evolution. The
alertcondition() function, which works in indicators only, was the first feature allowing Pine Script®

programmers to create alert events. Then came order fill alerts for strategies, which trigger when the
broker emulator creates order fill events. Order fill events require no special code for script users to
create alerts on them, but by way of the alert_message parameter for order-generating
strategy.*() functions, programmers can customize the message of alerts triggering on order
fill events by defining a distinct alert message for any number of order fulfillment events.

The alert() function is the most recent addition to Pine Script®. It more or less supersedes
alertcondition(), and when used in strategies, provides a useful complement to alerts on order fill
events.

Which type of alert is best?

For Pine Script® programmers, the alert() function will generally be easier and more flexible to
work with. Contrary to alertcondition(), it allows for dynamic alert messages, works in both
indicators and strategies and the programmer decides on the frequency of alert() events.

While alert() calls can be generated on any logic programmable in Pine, including when orders are
sent to the broker emulator in strategies, they cannot be coded to trigger when orders are executed
(or filled) because after orders are sent to the broker emulator, the emulator controls their execution
and does not report fill events back to the script directly.

When a script user wants to generate an alert on a strategy’s order fill events, he must include those
events when creating a script alert on the strategy in the “Create Alert” dialog box. No special code
is required in scripts for users to be able to do this. The message sent with order fill events can,
however, be customized by programmers through use of the alert_message parameter in order-
generating strategy.*() function calls. A combination of alert() calls and the use of custom
alert_message arguments in order-generating strategy.*() calls should allow
programmers to generate alert events on most conditions occurring in their script’s execution.

The alertcondition() function remains in Pine Script® for backward compatibility, but it can also be
used advantageously to generate distinct alerts available for selection as individual items in the
“Create Alert” dialog box’s “Condition” field.

Script alerts
When a script user creates a script alert using the “Create Alert” dialog box, the events able to
trigger the alert will vary depending on whether the alert is created from an indicator or a strategy.

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#id8
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#id7
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#id6

A script alert created from an indicator will trigger when:

• The indicator contains alert() calls.
• The code’s logic allows a specific alert() call to execute.
• The frequency specified in the alert() call allows the alert to trigger.

A script alert created from a strategy can trigger on alert() function calls, on order fill events, or
both. The script user creating an alert on a strategy decides which type of events he wishes to
include in his script alert. While users can create a script alert on order fill events without the need
for a strategy to include special code, it must contain alert() calls for users to include alert()
function calls in their script alert.

`alert()` function events

The alert() function has the following signature:

alert(message, freq)

message
A “series string” representing the message text sent when the alert triggers. Because this
argument allows the “series” form, it can be generated at runtime and differ bar to bar, making
it dynamic.

freq

An “input string” specifying the triggering frequency of the alert. Valid arguments are:

• alert.freq_once_per_bar: Only the first call per realtime bar triggers the alert
(default value).

• alert.freq_once_per_bar_close: An alert is only triggered when the
realtime bar closes and an alert() call is executed during that script iteration.

• alert.freq_all: All calls during the realtime bar trigger the alert.

The alert() function can be used in both indicators and strategies. For an alert() call to trigger a
script alert configured on alert() function calls, the script’s logic must allow the alert() call to
execute, and the frequency determined by the freq parameter must allow the alert to trigger.

Note that by default, strategies are recalculated at the bar’s close, so if the alert() function with the
frequency alert.freq_all or alert.freq_once_per_bar is used in a strategy, then it
will be called no more often than once at the bar’s close. In order to enable the alert() function to be
called during the bar construction process, you need to enable the calc_on_every_tick
option.

Using all `alert()` calls

Let’s look at an example where we detect crosses of the RSI centerline:

//@version=5
indicator("All `alert()` calls")
r = ta.rsi(close, 20)

// Detect crosses.
xUp = ta.crossover(r, 50)
xDn = ta.crossunder(r, 50)
// Trigger an alert on crosses.
if xUp
 alert("Go long (RSI is " + str.tostring(r, "#.00)"))
else if xDn

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#id10
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#id9
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert

 alert("Go short (RSI is " + str.tostring(r, "#.00)"))

plotchar(xUp, "Go Long", "▲", location.bottom, color.lime, size = size.tiny)
plotchar(xDn, "Go Short", "▼", location.top, color.red, size = size.tiny)
hline(50)
plot(r)

If a script alert is created from this script:

• When RSI crosses the centerline up, the script alert will trigger with the “Go long…”
message. When RSI crosses the centerline down, the script alert will trigger with the “Go
short…” message.

• Because no argument is specified for the freq parameter in the alert() call, the default value
of alert.freq_once_per_bar will be used, so the alert will only trigger the first time
each of the alert() calls is executed during the realtime bar.

• The message sent with the alert is composed of two parts: a constant string and then the
result of the str.tostring() call which will include the value of RSI at the moment where the
alert() call is executed by the script. An alert message for a cross up would look like: “Go
long (RSI is 53.41)”.

• Because a script alert always triggers on any occurrence of a call to alert(), as long as the
frequency used in the call allows for it, this particular script does not allow a script user to
restrict his script alert to longs only, for example.

Note that:

• Contrary to an alertcondition() call which is always placed at column 0 (in the script’s global
scope), the alert() call is placed in the local scope of an if branch so it only executes when
our triggering condition is met. If an alert() call was placed in the script’s global scope at
column 0, it would execute on all bars, which would likely not be the desired behavior.

• An alertcondition() could not accept the same string we use for our alert’s message because
of its use of the str.tostring() call. alertcondition() messages must be constant strings.

Lastly, because alert() messages can be constructed dynamically at runtime, we could have used the
following code to generate our alert events:

// Trigger an alert on crosses.
if xUp or xDn
 firstPart = (xUp ? "Go long" : "Go short") + " (RSI is "
 alert(firstPart + str.tostring(r, "#.00)"))

Using selective `alert()` calls

When users create a script alert on alert() function calls, the alert will trigger on any call the script
makes to the alert() function, provided its frequency constraints are met. If you want to allow your
script’s users to select which alert() function call in your script will trigger a script alert, you will
need to provide them with the means to indicate their preference in your script’s inputs, and code
the appropriate logic in your script. This way, script users will be able to create multiple script
alerts from a single script, each behaving differently as per the choices made in the script’s inputs
prior to creating the alert in the charts UI.

Suppose, for our next example, that we want to provide the option of triggering alerts on only longs,
only shorts, or both. You could code your script like this:

//@version=5
indicator("Selective `alert()` calls")
detectLongsInput = input.bool(true, "Detect Longs")
detectShortsInput = input.bool(true, "Detect Shorts")
repaintInput = input.bool(false, "Allow Repainting")

https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#id11
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_str%7Bdot%7Dtostring
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_str%7Bdot%7Dtostring
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert

r = ta.rsi(close, 20)
// Detect crosses.
xUp = ta.crossover(r, 50)
xDn = ta.crossunder(r, 50)
// Only generate entries when the trade's direction is allowed in inputs.
enterLong = detectLongsInput and xUp and (repaintInput or
barstate.isconfirmed)
enterShort = detectShortsInput and xDn and (repaintInput or
barstate.isconfirmed)
// Trigger the alerts only when the compound condition is met.
if enterLong
 alert("Go long (RSI is " + str.tostring(r, "#.00)"))
else if enterShort
 alert("Go short (RSI is " + str.tostring(r, "#.00)"))

plotchar(enterLong, "Go Long", "▲", location.bottom, color.lime, size =
size.tiny)
plotchar(enterShort, "Go Short", "▼", location.top, color.red, size =
size.tiny)
hline(50)
plot(r)

Note how:

• We create a compound condition that is met only when the user’s selection allows for an
entry in that direction. A long entry on a crossover of the centerline only triggers the alert
when long entries have been enabled in the script’s Inputs.

• We offer the user to indicate his repainting preference. When he does not allow the
calculations to repaint, we wait until the bar’s confirmation to trigger the compound
condition. This way, the alert and the marker only appear at the end of the realtime bar.

• If a user of this script wanted to create two distinct script alerts from this script, i.e., one
triggering only on longs, and one only on shorts, then he would need to:

• Select only “Detect Longs” in the inputs and create a first script alert on the script.
• Select only “Detect Shorts” in the Inputs and create another script alert on the script.

In strategies

alert() function calls can be used in strategies also, with the provision that strategies, by default,
only execute on the close of realtime bars. Unless calc_on_every_tick = true is used in
the strategy() declaration statement, all alert() calls will use the
alert.freq_once_per_bar_close frequency, regardless of the argument used for freq.

While script alerts on strategies will use order fill events to trigger alerts when the broker emulator
fills orders, alert() can be used advantageously to generate other alert events in strategies.

This strategy creates alert() function calls when RSI moves against the trade for three consecutive
bars:

//@version=5
strategy("Strategy with selective `alert()` calls")
r = ta.rsi(close, 20)

// Detect crosses.
xUp = ta.crossover(r, 50)
xDn = ta.crossunder(r, 50)
// Place orders on crosses.
if xUp
 strategy.entry("Long", strategy.long)
else if xDn

https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#id12

 strategy.entry("Short", strategy.short)

// Trigger an alert when RSI diverges from our trade's direction.
divInLongTrade = strategy.position_size > 0 and ta.falling(r, 3)
divInShortTrade = strategy.position_size < 0 and ta.rising(r, 3)
if divInLongTrade
 alert("WARNING: Falling RSI", alert.freq_once_per_bar_close)
if divInShortTrade
 alert("WARNING: Rising RSI", alert.freq_once_per_bar_close)

plotchar(xUp, "Go Long", "▲", location.bottom, color.lime, size = size.tiny)
plotchar(xDn, "Go Short", "▼", location.top, color.red, size = size.tiny)
plotchar(divInLongTrade, "WARNING: Falling RSI", "•", location.top,
color.red, size = size.tiny)
plotchar(divInShortTrade, "WARNING: Rising RSI", "•", location.bottom,
color.lime, size = size.tiny)
hline(50)
plot(r)

If a user created a script alert from this strategy and included both order fill events and alert()
function calls in his alert, the alert would trigger whenever an order is executed, or when one of the
alert() calls was executed by the script on the realtime bar’s closing iteration, i.e., when
barstate.isrealtime and barstate.isconfirmed are both true. The alert() function events in the script
would only trigger the alert when the realtime bar closes because
alert.freq_once_per_bar_close is the argument used for the freq parameter in the
alert() calls.

Order fill events

When a script alert is created from an indicator, it can only trigger on alert() function calls.
However, when a script alert is created from a strategy, the user can specify that order fill events
also trigger the script alert. An order fill event is any event generated by the broker emulator which
causes a simulated order to be executed. It is the equivalent of a trade order being filled by a
broker/exchange. Orders are not necessarily executed when they are placed. In a strategy, the
execution of orders can only be detected indirectly and after the fact, by analyzing changes in built-
in variables such as strategy.opentrades or strategy.position_size. Script alerts configured on order
fill events are thus useful in that they allow the triggering of alerts at the precise moment of an
order’s execution, before a script’s logic can detect it.

Pine Script® programmers can customize the alert message sent when specific orders are executed.
While this is not a pre-requisite for order fill events to trigger, custom alert messages can be useful
because they allow custom syntax to be included with alerts in order to route actual orders to a
third-party execution engine, for example. Specifying custom alert messages for specific order fill
events is done by means of the alert_message parameter in functions which can generate
orders: strategy.close(), strategy.entry(), strategy.exit() and strategy.order().

The argument used for the alert_message parameter is a “series string”, so it can be
constructed dynamically using any variable available to the script, as long as it is converted to string
format.

Let’s look at a strategy where we use the alert_message parameter in both our strategy.entry()
calls:

//@version=5
strategy("Strategy using `alert_message`")
r = ta.rsi(close, 20)

// Detect crosses.

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dorder
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclose
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dposition_size
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dopentrades
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#id13
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disconfirmed
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disrealtime
https://www.tradingview.com/pine-script-reference/v5/#fun_alert

xUp = ta.crossover(r, 50)
xDn = ta.crossunder(r, 50)
// Place order on crosses using a custom alert message for each.
if xUp
 strategy.entry("Long", strategy.long, stop = high, alert_message = "Stop-buy
executed (stop was " + str.tostring(high) + ")")
else if xDn
 strategy.entry("Short", strategy.short, stop = low, alert_message = "Stop-
sell executed (stop was " + str.tostring(low) + ")")

plotchar(xUp, "Go Long", "▲", location.bottom, color.lime, size = size.tiny)
plotchar(xDn, "Go Short", "▼", location.top, color.red, size = size.tiny)
hline(50)
plot(r)

Note that:

• We use the stop parameter in our strategy.entry() calls, which creates stop-buy and stop-
sell orders. This entails that buy orders will only execute once price is higher than the high
on the bar where the order is placed, and sell orders will only execute once price is lower
than the low on the bar where the order is placed.

• The up/down arrows which we plot with plotchar() are plotted when orders are placed. Any
number of bars may elapse before the order is actually executed, and in some cases the order
will never be executed because price does not meet the required condition.

• Because we use the same id argument for all buy orders, any new buy order placed before a
previous order’s condition is met will replace that order. The same applies to sell orders.

• Variables included in the alert_message argument are evaluated when the order is
executed, so when the alert triggers.

When the alert_message parameter is used in a strategy’s order-generating strategy.*()
function calls, script users must include the {{strategy.order.alert_message}}
placeholder in the “Create Alert” dialog box’s “Message” field when creating script alerts on order
fill events. This is required so the alert_message argument used in the order-generating
strategy.*() function calls is used in the message of alerts triggering on each order fill event.
When only using the {{strategy.order.alert_message}} placeholder in the “Message”
field and the alert_message parameter is present in only some of the order-generating
strategy.*() function calls in your strategy, an empty string will replace the placeholder in the
message of alerts triggered by any order-generating strategy.*() function call not using the
alert_message parameter.

While other placeholders can be used in the “Create Alert” dialog box’s “Message” field by users
creating alerts on order fill events, they cannot be used in the argument of alert_message.

`alertcondition()` events
The alertcondition() function allows programmers to create individual alertcondition events in their
indicators. One indicator may contain more than one alertcondition() call. Each call to
alertcondition() in a script will create a corresponding alert selectable in the “Condition” dropdown
menu of the “Create Alert” dialog box.

While the presence of alertcondition() calls in a strategy script will not cause a compilation error,
alerts cannot be created from them.

The alertcondition() function has the following signature:

alertcondition(condition, title, message)

https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#id14
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry

condition
A “series bool” value (true or false) which determines when the alert will trigger. It is a
required argument. When the value is true the alert will trigger. When the value is false
the alert will not trigger. Contrary to alert() function calls, alertcondition() calls must start at
column zero of a line, so cannot be placed in conditional blocks.

title
A “const string” optional argument that sets the name of the alert condition as it will appear in
the “Create Alert” dialog box’s “Condition” field in the charts UI. If no argument is supplied,
“Alert” will be used.

message
A “const string” optional argument that specifies the text message to display when the alert
triggers. The text will appear in the “Message” field of the “Create Alert” dialog box, from
where script users can then modify it when creating an alert. As this argument must be a
“const string”, it must be known at compilation time and thus cannot vary bar to bar. It
can, however, contain placeholders which will be replaced at runtime by dynamic values that
may change bar to bar. See this page’s Placeholders section for a list.

The alertcondition() function does not include a freq parameter. The frequency of alertcondition()
alerts is determined by users in the “Create Alert” dialog box.

Using one condition

Here is an example of code creating alertcondition() events:

//@version=5
indicator("`alertcondition()` on single condition")
r = ta.rsi(close, 20)

xUp = ta.crossover(r, 50)
xDn = ta.crossunder(r, 50)

plot(r, "RSI")
hline(50)
plotchar(xUp, "Long", "▲", location.bottom, color.lime, size = size.tiny)
plotchar(xDn, "Short", "▼", location.top, color.red, size = size.tiny)

alertcondition(xUp, "Long Alert", "Go long")
alertcondition(xDn, "Short Alert", "Go short ")

Because we have two alertcondition() calls in our script, two different alerts will be available in the
“Create Alert” dialog box’s “Condition” field: “Long Alert” and “Short Alert”.

If we wanted to include the value of RSI when the cross occurs, we could not simply add its value
to the message string using str.tostring(r), as we could in an alert() call or in an
alert_message argument in a strategy. We can, however, include it using a placeholder. This
shows two alternatives:

alertcondition(xUp, "Long Alert", "Go long. RSI is {{plot_0}}")
alertcondition(xDn, "Short Alert", 'Go short. RSI is {{plot("RSI")}}')

Note that:

• The first line uses the {{plot_0}} placeholder, where the plot number corresponds to the
order of the plot in the script.

• The second line uses the {{plot("[plot_title]")}} type of placeholder, which
must include the title of the plot() call used in our script to plot RSI. Double quotes are

https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#id15
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#placeholders
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert

used to wrap the plot’s title inside the {{plot("RSI")}} placeholder. This requires that
we use single quotes to wrap the message string.

• Using one of these methods, we can include any numeric value that is plotted by our
indicator, but as strings cannot be plotted, no string variable can be used.

Using compound conditions

If we want to offer script users the possiblity of creating a single alert from an indicator using
multiple alertcondition() calls, we will need to provide options in the script’s inputs through which
users will indicate the conditions they want to trigger their alert before creating it.

This script demonstrates one way to do it:

//@version=5
indicator("`alertcondition()` on multiple conditions")
detectLongsInput = input.bool(true, "Detect Longs")
detectShortsInput = input.bool(true, "Detect Shorts")

r = ta.rsi(close, 20)
// Detect crosses.
xUp = ta.crossover(r, 50)
xDn = ta.crossunder(r, 50)
// Only generate entries when the trade's direction is allowed in inputs.
enterLong = detectLongsInput and xUp
enterShort = detectShortsInput and xDn

plot(r)
plotchar(enterLong, "Go Long", "▲", location.bottom, color.lime, size =
size.tiny)
plotchar(enterShort, "Go Short", "▼", location.top, color.red, size =
size.tiny)
hline(50)
// Trigger the alert when one of the conditions is met.
alertcondition(enterLong or enterShort, "Compound alert", "Entry")

Note how the alertcondition() call is allowed to trigger on one of two conditions. Each condition
can only trigger the alert if the user enables it in the script’s inputs before creating the alert.

Placeholders

These placeholders can be used in the message argument of alertcondition() calls. They will be
replaced with dynamic values when the alert triggers. They are the only way to include dynamic
values (values that can vary bar to bar) in alertcondition() messages.

Note that users creating alertcondition() alerts from the “Create Alert” dialog box in the charts UI
are also able to use these placeholders in the dialog box’s “Message” field.

{{exchange}}
Exchange of the symbol used in the alert (NASDAQ, NYSE, MOEX, etc.). Note that for
delayed symbols, the exchange will end with “_DL” or “_DLY.” For example,
“NYMEX_DL.”

{{interval}}
Returns the timeframe of the chart the alert is created on. Note that Range charts are
calculated based on 1m data, so the placeholder will always return “1” on any alert created on
a Range chart.

{{open}}, {{high}}, {{low}}, {{close}}, {{volume}}
Corresponding values of the bar on which the alert has been triggered.

{{plot_0}}, {{plot_1}}, […], {{plot_19}}

https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#id17
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#id16

Value of the corresponding plot number. Plots are numbered from zero to 19 in order of
appearance in the script, so only one of the first 20 plots can be used. For example, the built-
in “Volume” indicator has two output series: Volume and Volume MA, so you could use the
following:

alertcondition(volume > sma(volume,20), "Volume alert", "Volume ({{plot_0}}) >
average ({{plot_1}})")

{{plot("[plot_title]")}}

This placeholder can be used when one needs to refer to a plot using the title argument
used in a plot() call. Note that double quotation marks (") must be used inside the placeholder
to wrap the title argument. This requires that a single quotation mark (') be used to wrap
the message string:

//@version=5
indicator("")
r = ta.rsi(close, 14)
xUp = ta.crossover(r, 50)
plot(r, "RSI", display = display.none)
alertcondition(xUp, "xUp alert", message = 'RSI is bullish at:
{{plot("RSI")}}')

{{ticker}}
Ticker of the symbol used in the alert (AAPL, BTCUSD, etc.).

{{time}}
Returns the time at the beginning of the bar. Time is UTC, formatted as yyyy-MM-
ddTHH:mm:ssZ, so for example: 2019-08-27T09:56:00Z.

{{timenow}}
Current time when the alert triggers, formatted in the same way as {{time}}. The precision
is to the nearest second, regardless of the chart’s timeframe.

Avoiding repainting with alerts
The most common instances of repainting traders want to avoid with alerts are ones where they
must prevent an alert from triggering at some point during the realtime bar when it would not have
triggered at its close. This can happen when these conditions are met:

• The calculations used in the condition triggering the alert can vary during the realtime bar.
This will be the case with any calculation using high, low or close, for example, which
includes almost all built-in indicators. It will also be the case with the result of any
request.security() call using a higher timeframe than the chart’s, when the higher
timeframe’s current bar has not closed yet.

• The alert can trigger before the close of the realtime bar, so with any frequency other than
“Once Per Bar Close”.

The simplest way to avoid this type of repainting is to configure the triggering frequency of alerts
so they only trigger on the close of the realtime bar. There is no panacea; avoiding this type of
repainting always entails waiting for confirmed information, which means the trader must sacrifice
immediacy to achieve reliability.

Note that other types of repainting such as those documented in our Repainting section may not be
preventable by simply triggering alerts on the close of realtime bars.

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#pagerepainting
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#id18
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

Backgrounds
The bgcolor() function changes the color of the script’s background. If the script is running in
overlay = true mode, then it will color the chart’s background.

The function’s signature is:

bgcolor(color, offset, editable, show_last, title) → void

Its color parameter allows a “series color” to be used for its argument, so it can be dynamically
calculated in an expression.

If the correct transparency is not part of the color to be used, it can be be generated using the
color.new() function.

Here is a script that colors the background of trading sessions (try it on 30min EURUSD, for
example):

//@version=5
indicator("Session backgrounds", overlay = true)

// Default color constants using tranparency of 25.
BLUE_COLOR = #0050FF40
PURPLE_COLOR = #0000FF40
PINK_COLOR = #5000FF40
NO_COLOR = color(na)

// Allow user to change the colors.
preMarketColor = input.color(BLUE_COLOR, "Pre-market")
regSessionColor = input.color(PURPLE_COLOR, "Pre-market")
postMarketColor = input.color(PINK_COLOR, "Pre-market")

// Function returns `true` when the bar's time is
timeInRange(tf, session) =>
 time(tf, session) != 0

// Function prints a message at the bottom-right of the chart.
f_print(_text) =>
 var table _t = table.new(position.bottom_right, 1, 1)
 table.cell(_t, 0, 0, _text, bgcolor = color.yellow)

var chartIs30MinOrLess = timeframe.isseconds or (timeframe.isintraday and
timeframe.multiplier <=30)
sessionColor = if chartIs30MinOrLess
 switch
 timeInRange(timeframe.period, "0400-0930") => preMarketColor
 timeInRange(timeframe.period, "0930-1600") => regSessionColor
 timeInRange(timeframe.period, "1600-2000") => postMarketColor
 => NO_COLOR
else
 f_print("No background is displayed.\nChart timeframe must be <= 30min.")
 NO_COLOR

bgcolor(sessionColor)

https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor

Note that:

• The script only works on chart timeframes of 30min or less. It prints an error message when
the chart’s timeframe is higher than 30min.

• When the if structure’s else branch is used because the chart’s timeframe is incorrect, the
local block returns the NO_COLOR color so that no background is displayed in that case.

• We first initialize constants using our base colors, which include the 40 transparency in hex
notation at the end. 40 in the hexadecimal notation on the reversed 00-FF scale for
transparency corresponds to 75 in Pine Script®’s 0-100 decimal scale for transparency.

• We provide color inputs allowing script users to change the default colors we propose.

In our next example, we generate a gradient for the background of a CCI line:

//@version=5
indicator("CCI Background")

bullColor = input.color(color.lime, "?", inline = "1")
bearColor = input.color(color.fuchsia, "?", inline = "1")

// Calculate CCI.
myCCI = ta.cci(hlc3, 20)
// Get relative position of CCI in last 100 bars, on a 0-100% scale.
myCCIPosition = ta.percentrank(myCCI, 100)
// Generate a bull gradient when position is 50-100%, bear gradient when
position is 0-50%.
backgroundColor = if myCCIPosition >= 50
 color.from_gradient(myCCIPosition, 50, 100, color.new(bullColor, 75),

https://www.tradingview.com/pine-script-reference/v5/#op_if

bullColor)
else
 color.from_gradient(myCCIPosition, 0, 50, bearColor, color.new(bearColor,
75))

// Wider white line background.
plot(myCCI, "CCI", color.white, 3)
// Think black line.
plot(myCCI, "CCI", color.black, 1)
// Zero level.
hline(0)
// Gradient background.
bgcolor(backgroundColor)

Note that:

• We use the ta.cci() built-in function to calculate the indicator value.
• We use the ta.percentrank() built-in function to calculate myCCIPosition, i.e., the

percentage of past myCCI values in the last 100 bars that are below the current value of
myCCI.

• To calculate the gradient, we use two different calls of the color.from_gradient() built-in: one
for the bull gradient when myCCIPosition is in the 50-100% range, which means that
more past values are below its current value, and another for the bear gradient when
myCCIPosition is in the 0-49.99% range, which means that more past values are above
it.

• We provide inputs so the user can change the bull/bear colors, and we place both color input
widgets on the same line using inline = "1" in both input.color() calls.

• We plot the CCI signal using two plot() calls to achieve the best contrast over the busy
background: the first plot is a 3-pixel wide white background, the second plot() call plots the
thin, 1-pixel wide black line.

See the Colors page for more examples of backgrounds.

Bar coloring
The barcolor() function lets you color chart bars. It is the only Pine Script® function that allows a
script running in a pane to affect the chart.

The function’s signature is:

barcolor(color, offset, editable, show_last, title) → void

The coloring can be conditional because the color parameter accepts “series color” arguments.

The following script renders inside and outside bars in different colors:

Bar plotting
• Introduction
• Plotting candles with `plotcandle()`
• Plotting bars with `plotbar()`

Introduction
The plotcandle() built-in function is used to plot candles. plotbar() is used to plot conventional bars.

Both functions require four arguments that will be used for the OHLC prices (open, high, low,
close) of the bars they will be plotting. If one of those is na, no bar is plotted.

Plotting candles with `plotcandle()`
The signature of plotcandle() is:

https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_plotting.html#id2
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#fun_plotbar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_plotting.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_plotting.html#plotting-bars-with-plotbar
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_plotting.html#plotting-candles-with-plotcandle
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_plotting.html#introduction
https://www.tradingview.com/pine-script-reference/v5/#fun_barcolor
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#pagecolors
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dfrom_gradient
https://www.tradingview.com/pine-script-reference/v5/#ta.percentrank
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dcci

plotcandle(open, high, low, close, title, color, wickcolor, editable, show_last,
bordercolor, display) → void

This plots simple candles, all in blue, using the habitual OHLC values, in a separate pane:

//@version=5
indicator("Single-color candles")
plotcandle(open, high, low, close)

To color them green or red, we can use the following code:

//@version=5
indicator("Example 2")
paletteColor = close >= open ? color.lime : color.red
plotbar(open, high, low, close, color = paletteColor)

Note that the color parameter accepts “series color” arguments, so constant values such as
color.red, color.lime, "#FF9090", as well as expressions that calculate colors at runtime,
as is done with the paletteColor variable here, will all work.

You can build bars or candles using values other than the actual OHLC values. For example you
could calculate and plot smoothed candles using the following code, which also colors wicks
depending on the position of close relative to the smoothed close (c) of our indicator:

//@version=5
indicator("Smoothed candles", overlay = true)
lenInput = input.int(9)
smooth(source, length) =>
 ta.sma(source, length)
o = smooth(open, lenInput)
h = smooth(high, lenInput)
l = smooth(low, lenInput)
c = smooth(close, lenInput)
ourWickColor = close > c ? color.green : color.red
plotcandle(o, h, l, c, wickcolor = ourWickColor)

https://www.tradingview.com/pine-script-reference/v5/#var_close

You may find it useful to plot OHLC values taken from a higher timeframe. You can, for example,
plot daily bars on an intraday chart:

// NOTE: Use this script on an intraday chart.
//@version=5
indicator("Daily bars")

// Use gaps to only return data when the 1D timeframe completes, `na` otherwise.
[o, h, l, c] = request.security(syminfo.tickerid, "D", [open, high, low, close],
gaps = barmerge.gaps_on)

var color UP_COLOR = color.silver
var color DN_COLOR = color.blue
color wickColor = c >= o ? UP_COLOR : DN_COLOR
color bodyColor = c >= o ? color.new(UP_COLOR, 70) : color.new(DN_COLOR, 70)
// Only plot candles on intraday timeframes,
// and when non `na` values are returned by `request.security()` because a HTF
has completed.
plotcandle(timeframe.isintraday ? o : na, h, l, c, color = bodyColor, wickcolor
= wickColor)

Note that:

• We show the script’s plot after having used “Visual Order/Bring to Front” from the script’s
“More” menu. This causes our script’s candles to appear on top of the chart’s candles.

• The script will only display candles when two conditions are met:

• The chart is using an intraday timeframe (see the check on
timeframe.isintraday in the plotcandle() call). We do this
because it’s not useful to show a daily value on timeframes higher or
equal to 1D.

• The request.security() function returns non na values (see gaps =
barmerge.gaps_on in the function call).

• We use a tuple ([open, high, low, close]) with request.security() to fetch four
values in one call.

• We use var to declare our UP_COLOR and DN_COLOR color constants on bar zero only. We
use constants because those colors are used in more than one place in our code. This way, if
we need to change them, we need only do so in one place.

• We create a lighter transparency for the body of our candles in the bodyColor variable
initialization, so they don’t obstruct the chart’s candles.

Plotting bars with `plotbar()`
The signature of plotbar() is:

plotbar(open, high, low, close, title, color, editable, show_last, display) →
void

Note that plotbar() has no parameter for bordercolor or wickcolor, as there are no borders

https://www.tradingview.com/pine-script-reference/v5/#fun_plotbar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotbar
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_plotting.html#id3
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle

or wicks on conventional bars.

This plots conventional bars using the same coloring logic as in the second example of the previous
section:

//@version=5
indicator("Dual-color bars")
paletteColor = close >= open ? color.lime : color.red
plotbar(open, high, low, close, color = paletteColor)

Bar states
• Introduction
• Bar state built-in variables

• `barstate.isfirst`
• `barstate.islast`
• `barstate.ishistory`
• `barstate.isrealtime`
• `barstate.isnew`
• `barstate.isconfirmed`
• `barstate.islastconfirmedhistory`

• Example

Introduction
A set of built-in variables in the barstate namespace allow your script to detect different
properties of the bar on which the script is currently executing.

These states can be used to restrict the execution or the logic of your code to specific bars.

Some built-ins return information on the trading session the current bar belongs to. They are
explained in the Session states section.

Bar state built-in variables
Note that while indicators and libraries run on all price or volume updates in real time, strategies not
using calc_on_every_tick will not; they will only execute when the realtime bar closes. This
will affect the detection of bar states in that type of script. On open markets, for example, this code
will not display a background until the realtime closes because that is when the strategy runs:

//@version=5
strategy("S")
bgcolor(barstate.islast ? color.silver : na)

`barstate.isfirst`

barstate.isfirst is only true on the dataset’s first bar, i.e., when bar_index is zero.

It can be useful to initialize variables on the first bar only, e.g.:

// Declare array and set its values on the first bar only.
FILL_COLOR = color.green
var fillColors = array.new_color(0)
if barstate.isfirst
 // Initialize the array elements with progressively lighter shades of the

https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disfirst
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#id3
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#pagesessions-sessionstates
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#example
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#barstate-islastconfirmedhistory
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#barstate-isconfirmed
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#barstate-isnew
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#barstate-isrealtime
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#barstate-ishistory
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#barstate-islast
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#barstate-isfirst
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#bar-state-built-in-variables
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#introduction

fill color.
 array.push(fillColors, color.new(FILL_COLOR, 70))
 array.push(fillColors, color.new(FILL_COLOR, 75))
 array.push(fillColors, color.new(FILL_COLOR, 80))
 array.push(fillColors, color.new(FILL_COLOR, 85))
 array.push(fillColors, color.new(FILL_COLOR, 90))

`barstate.islast`

barstate.islast is true if the current bar is the last one on the chart, whether that bar is a realtime
bar or not.

It can be used to restrict the execution of code to the chart’s last bar, which is often useful when
drawing lines, labels or tables. Here, we use it to determine when to update a label which we want
to appear only on the last bar. We create the label only once and then update its properties using
label.set_*() functions because it is more efficient:

//@version=5
indicator("", "", true)
// Create label on the first bar only.
var label hiLabel = label.new(na, na, "")
// Update the label's position and text on the last bar,
// including on all realtime bar updates.
if barstate.islast
 label.set_xy(hiLabel, bar_index, high)
 label.set_text(hiLabel, str.tostring(high, format.mintick))

`barstate.ishistory`

barstate.ishistory is true on all historical bars. It can never be true on a bar when
barstate.isrealtime is also true, and it does not become true on a realtime bar’s closing update,
when barstate.isconfirmed becomes true. On closed markets, it can be true on the same bar
where barstate.islast is also true.

`barstate.isrealtime`

barstate.isrealtime is true if the current data update is a real-time bar update, false otherwise
(thus it is historical). Note that barstate.islast is also true on all realtime bars.

`barstate.isnew`

barstate.isnew is true on all historical bars and on the realtime bar’s first (opening) update.

All historical bars are considered new bars because the Pine Script® runtime executes your script on
each bar sequentially, from the chart’s first bar in time, to the last. Each historical bar is thus
discovered by your script as it executes, bar to bar.

barstate.isnew can be useful to reset varip variables when a new realtime bar comes in. The
following code will reset updateNo to 1 on all historical bars and at the beginning of each
realtime bar. It calculates the number of realtime updates during each realtime bar:

//@version=5
indicator("")
updateNo() =>
 varip int updateNo = na
 if barstate.isnew
 updateNo := 1

https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disnew
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disnew
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#id7
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Dislast
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disrealtime
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#id6
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Dislast
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disconfirmed
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disrealtime
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Dishistory
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#id5
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Dislast
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#id4

 else
 updateNo += 1
plot(updateNo())

`barstate.isconfirmed`

barstate.isconfirmed is true on all historical bars and on the last (closing) update of a realtime bar.

It can be useful to avoid repainting by requiring the realtime bar to be closed before a condition can
become true. We use it here to hold plotting of our RSI until the realtime bar closes and becomes
an elapsed realtime bar. It will plot on historical bars because barstate.isconfirmed is always true
on them:

//@version=5
indicator("")
myRSI = ta.rsi(close, 20)
plot(barstate.isconfirmed ? myRSI : na)

barstate.isconfirmed will not work when used in a request.security() call.

`barstate.islastconfirmedhistory`

barstate.islastconfirmedhistory is true if the script is executing on the dataset’s last bar when the
market is closed, or on the bar immediately preceding the realtime bar if the market is open.

It can be used to detect the first realtime bar with
barstate.islastconfirmedhistory[1], or to postpone server-intensive calculations
until the last historical bar, which would otherwise be undetectable on open markets.

Example
Here is an example of a script using barstate.* variables:

//@version=5
indicator("Bar States", overlay = true, max_labels_count = 500)

stateText() =>
 string txt = ""
 txt += barstate.isfirst ? "isfirst\n" : ""
 txt += barstate.islast ? "islast\n" : ""
 txt += barstate.ishistory ? "ishistory\n" : ""
 txt += barstate.isrealtime ? "isrealtime\n" : ""
 txt += barstate.isnew ? "isnew\n" : ""
 txt += barstate.isconfirmed ? "isconfirmed\n" : ""
 txt += barstate.islastconfirmedhistory ? "islastconfirmedhistory\n" : ""

labelColor = switch
 barstate.isfirst => color.fuchsia
 barstate.islastconfirmedhistory => color.gray
 barstate.ishistory => color.silver
 barstate.isconfirmed => color.orange
 barstate.isnew => color.red
 => color.yellow

label.new(bar_index, na, stateText(), yloc = yloc.abovebar, color = labelColor)

Note that:

• Each state’s name will appear in the label’s text when it is true.

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#id10
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Dislastconfirmedhistory
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#id9
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disconfirmed
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disconfirmed
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disconfirmed
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#id8

• There are five possible colors for the label’s background:
• fuchsia on the first bar
• silver on historical bars
• gray on the last confirmed historical bar
• orange when a realtime bar is confirmed (when it closes and becomes an elapsed

realtime bar)
• red on the realtime bar’s first execution
• yellow for other executions of the realtime bar

We begin by adding the indicator to the chart of an open market, but before any realtime update is
received. Note how the last confirmed history bar is identified in #1, and how the last bar is
identified as the last one, but is still considered a historical bar because no realtime updates have
been received.

Let’s look at what happens when realtime updates start coming in:

Note that:

• The realtime bar is red because it is its first execution, because barstate.isnew is
true and barstate.ishistory is no longer true, so our switch structure determing
our color uses the barstate.isnew => color.red branch. This will usually not last
long because on the next update barstate.isnew will no longer be true so the label’s
color will turn yellow.

• The label of elapsed realtime bars is orange because those bars were not historical bars when
they closed. Accordingly, the barstate.ishistory => color.silver branch in
the switch structure was not executed, but the next one, barstate.isconfirmed =>
color.orange was.

This last example shows how the realtime bar’s label will turn yellow after the first execution on the
bar. This is the way the label will usually appear on realtime bars:

https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#op_switch

Chart information
• Introduction
• Prices and volume
• Symbol information
• Chart timeframe
• Session information

Introduction
The way scripts can obtain information about the chart and symbol they are currently running on is
through a subset of Pine Script®’s built-in variables. The ones we cover here allow scripts to access
information relating to:

• The chart’s prices and volume
• The chart’s symbol
• The chart’s timeframe
• The session (or time period) the symbol trades on

Prices and volume
The built-in variables for OHLCV values are:

• open: the bar’s opening price.
• high: the bar’s highest price, or the highest price reached during the realtime bar’s elapsed

time.
• low: the bar’s lowest price, or the lowest price reached during the realtime bar’s elapsed

time.
• close: the bar’s closing price, or the current price in the realtime bar.
• volume: the volume traded during the bar, or the volume traded during the realtime bar’s

elapsed time. The unit of volume information varies with the instrument. It is in shares for
stocks, in lots for forex, in contracts for futures, in the base currency for crypto, etc.

Other values are available through:

• hl2: the average of the bar’s high and low values.
• hlc3: the average of the bar’s high, low and close values.
• ohlc4: the average of the bar’s open, high, low and close values.

On historical bars, the values of the above variables do not vary during the bar because only
OHLCV information is available on them. When running on historical bars, scripts execute on the
bar’s close, when all the bar’s information is known and cannot change during the script’s execution
on the bar.

Realtime bars are another story altogether. When indicators (or strategies using
calc_on_every_tick = true) run in realtime, the values of the above variables (except
open) will vary between successive iterations of the script on the realtime bar, because they
represent their current value at one point in time during the progress of the realtime bar. This may
lead to one form of repainting. See the page on Pine Script®’s execution model for more details.

The [] history-referencing operator can be used to refer to past values of the built-in variables, e.g.,

https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#pageoperators-historyreferencingoperator
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#pagerepainting
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_ohlc4
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_hlc3
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_hl2
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Chart_information.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/language/Built-ins.html#pagebuiltinfunctions-builtinvariables
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Chart_information.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Chart_information.html#session-information
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Chart_information.html#chart-timeframe
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Chart_information.html#symbol-information
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Chart_information.html#prices-and-volume
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Chart_information.html#introduction

close[1] refers to the value of close on the previous bar, relative to the particular bar the script is
executing on.

Symbol information
Built-in variables in the syminfo namespace provide scripts with information on the symbol of
the chart the script is running on. This information changes every time a script user changes the
chart’s symbol. The script then re-executes on all the chart’s bars using the new values of the built-
in variables:

• syminfo.basecurrency: the base currency, e.g., “BTC” in “BTCUSD”, or “EUR” in
“EURUSD”.

• syminfo.currency: the quote currency, e.g., “USD” in “BTCUSD”, or “CAD” in
“USDCAD”.

• syminfo.description: The long description of the symbol.
• syminfo.mintick: The symbol’s tick value, or the minimum increment price can move in.

Not to be confused with pips or points. On “ES1!” (“S&P 500 E-Mini”) the tick size is 0.25
because that is the minimal increment the price moves in.

• syminfo.pointvalue: The point value is the multiple of the underlying asset determining a
contract’s value. On “ES1!” (“S&P 500 E-Mini”) the point value is 50, so a contract is worth
50 times the price of the instrument.

• syminfo.prefix: The prefix is the exchange or broker’s identifier: “NASDAQ” or “BATS”
for “AAPL”, “CME_MINI_DL” for “ES1!”.

• syminfo.root: It is the ticker’s prefix for structured tickers like those of futures. It is “ES” for
“ES1!”, “ZW” for “ZW1!”.

• syminfo.session: It reflects the session setting on the chart for that symbol. If the “Chart
settings/Symbol/Session” field is set to “Extended”, it will only return “extended” if the
symbol and the user’s feed allow for extended sessions. It is rarely displayed and used
mostly as an argument to the session parameter in ticker.new().

• syminfo.ticker: It is the symbol’s name, without the exchange part (syminfo.prefix):
“BTCUSD”, “AAPL”, “ES1!”, “USDCAD”.

• syminfo.tickerid: This string is rarely displayed. It is mostly used as an argument for
request.security()’s symbol parameter. It includes session, prefix and ticker information.

• syminfo.timezone: The timezone the symbol is traded in. The string is an IANA time zone
database name (e.g., “America/New_York”).

• syminfo.type: The type of market the symbol belongs to. The values are “stock”, “futures”,
“index”, “forex”, “crypto”, “fund”, “dr”, “cfd”, “bond”, “warrant”, “structured” and “right”.

This script will display the values of those built-in variables on the chart:

//@version=5
indicator("`syminfo.*` built-ins", "", true)
printTable(txtLeft, txtRight) =>
 var table t = table.new(position.middle_right, 2, 1)
 table.cell(t, 0, 0, txtLeft, bgcolor = color.yellow, text_halign =
text.align_right)
 table.cell(t, 1, 0, txtRight, bgcolor = color.yellow, text_halign =
text.align_left)

nl = "\n"
left =
 "syminfo.basecurrency: " + nl +
 "syminfo.currency: " + nl +
 "syminfo.description: " + nl +
 "syminfo.mintick: " + nl +

https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dtype
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dtimezone
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dtickerid
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dprefix
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dticker
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dsession
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Droot
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dprefix
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dpointvalue
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dmintick
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Ddescription
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dcurrency
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dbasecurrency
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Chart_information.html#id3
https://www.tradingview.com/pine-script-reference/v5/#var_close

 "syminfo.pointvalue: " + nl +
 "syminfo.prefix: " + nl +
 "syminfo.root: " + nl +
 "syminfo.session: " + nl +
 "syminfo.ticker: " + nl +
 "syminfo.tickerid: " + nl +
 "syminfo.timezone: " + nl +
 "syminfo.type: "

right =
 syminfo.basecurrency + nl +
 syminfo.currency + nl +
 syminfo.description + nl +
 str.tostring(syminfo.mintick) + nl +
 str.tostring(syminfo.pointvalue) + nl +
 syminfo.prefix + nl +
 syminfo.root + nl +
 syminfo.session + nl +
 syminfo.ticker + nl +
 syminfo.tickerid + nl +
 syminfo.timezone + nl +
 syminfo.type

printTable(left, right)

Chart timeframe
A script can obtain information on the type of timeframe used on the chart using these built-ins,
which all return a “simple bool” result:

• timeframe.isseconds
• timeframe.isminutes
• timeframe.isintraday
• timeframe.isdaily
• timeframe.isweekly
• timeframe.ismonthly
• timeframe.isdwm

Two additional built-ins return more specific timeframe information:

• timeframe.multiplier returns a “simple int” containing the multiplier of the timeframe unit. A
chart timeframe of one hour will return 60 because intraday timeframes are expressed in
minutes. A 30sec timeframe will return 30 (seconds), a daily chart will return 1 (day), a
quarterly chart will return 3 (months), and a yearly chart will return 12 (months). The value
of this variable cannot be used as an argument to timeframe parameters in built-in
functions, as they expect a string in timeframe specifications format.

• timeframe.period returns a string in Pine Script®’s timeframe specification format.

See the page on Timeframes for more information.

Session information
Session information is available in different forms:

• The syminfo.session built-in variable returns a value that is either session.regular or
session.extended. It reflects the session setting on the chart for that symbol. If the “Chart
settings/Symbol/Session” field is set to “Extended”, it will only return “extended” if the

https://www.tradingview.com/pine-script-reference/v5/#var_session%7Bdot%7Dextended
https://www.tradingview.com/pine-script-reference/v5/#var_session%7Bdot%7Dregular
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dsession
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Chart_information.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Timeframes.html#pagetimeframes
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Dperiod
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Dmultiplier
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Disdwm
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Dismonthly
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Disweekly
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Disdaily
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Disintraday
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Disminutes
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Disseconds
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Chart_information.html#id4

symbol and the user’s feed allow for extended sessions. It is used when a session type is
expected, for example as the argument for the session parameter in ticker.new().

• Session state built-ins provide information on the trading session a bar belongs to.

Colors
• Introduction

• Transparency
• Z-index

• Constant colors
• Conditional coloring
• Calculated colors

• color.new()
• color.rgb()
• color.from_gradient()

• Mixing transparencies
• Tips

• Designing usable colors schemes
• Plot crisp lines
• Customize gradients
• Color selection through script settings

Introduction
Script visuals can play a critical role in the usability of the indicators we write in Pine Script®.
Well-designed plots and drawings make indicators easier to use and understand. Good visual
designs establish a visual hierarchy that allows the more important information to stand out, and the
less important one to not get in the way.

Using colors in Pine can be as simple as you want, or as involved as your concept requires. The
4,294,967,296 possible assemblies of color and transparency available in Pine Script® can be
applied to:

• Any element you can plot or draw in an indicator’s visual space, be it lines, fills, text or
candles.

• The background of a script’s visual space, whether the script is running in its own pane, or in
overlay mode on the chart.

• The color of bars or the body of candles appearing on a chart.

A script can only color the elements it places in its own visual space. The only exception to this rule
is that a pane indicator can color chart bars or candles.

Pine Script® has built-in colors such as color.green, as well as functions like color.rgb() which allow
you to dynamically generate any color in the RGBA color space.

https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Drgb
https://www.tradingview.com/pine-script-reference/v5/#var_color%7Bdot%7Dgreen
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#color-selection-through-script-settings
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#customize-gradients
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#plot-crisp-lines
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#designing-usable-colors-schemes
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#tips
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#mixing-transparencies
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#color-from-gradient
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#color-rgb
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#color-new
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#calculated-colors
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#conditional-coloring
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#constant-colors
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#z-index
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#transparency
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#introduction
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#pagesessions-sessionstates
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Dnew

Transparency

Each color in Pine Script® is defined by four values:

• Its red, green and blue components (0-255), following the RGB color model.
• Its transparency (0-100), often referred to as the Alpha channel outside Pine, as defined in

the RGBA color model. Even though transparency is expressed in the 0-100 range, its value
can be a “float” when used in functions, which gives you access to the 256 underlying
values of the alpha channel.

The transparency of a color defines how opaque it is: zero is fully opaque, 100 makes the color—
whichever it is—invisible. Modulating transparency can be crucial in more involved color visuals or
when using backgrounds, to control which colors dominate the others, and how they mix together
when superimposed.

Z-index

When you place elements in a script’s visual space, they have relative depth on the z axis; some will
appear on top of others. The z-index is a value that represents the position of elements on the z axis.
Elements with the highest z-index appear on top.

Elements drawn in Pine Script® are divided in groups. Each group has its own position in the z
space, and within the same group, elements created last in the script’s logic will appear on top of
other elements from the same group. An element of one group cannot be placed outside the region
of the z space attributed to its group, so a plot can never appear on top of a table, for example,
because tables have the highest z-index.

This list contains the groups of visual elements, ordered by increasing z-index, so background
colors are always at the bottom of z space, and tables will always appear on top of all other
elements:

• Background colors
• Plots
• Hlines
• Fills
• Boxes
• Labels
• Lines
• Tables

Note that by using explicit_plot_zorder = true in indicator() or strategy(), you can
control the relative z-index of plot*(), hline() and fill() visuals using their sequential order in the
script.

Constant colors
There are 17 built-in colors in Pine Script®. This table lists their names, hexadecimal equivalent,
and RGB values as arguments to color.rgb():

Name Hex
RGB
values

color.aqua #00BCD4 color.rgb(
0, 188,
212)

https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Drgb
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#id4
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#id3
https://en.wikipedia.org/wiki/RGB_color_space
https://en.wikipedia.org/wiki/RGB_color_space
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#id2

Name Hex
RGB
values

color.black #363A45 color.rgb(
54, 58, 69)

color.blue #2196F3 color.rgb(
33, 150,
243)

color.fuchsia #E040FB color.rgb(
224, 64,
251)

color.gray #787B86 color.rgb(
120, 123,
134)

color.green #4CAF50 color.rgb(
76, 175,
80)

color.lime #00E676 color.rgb(
0, 230,
118)

color.maroon #880E4F color.rgb(
136, 14,
79)

color.navy #311B92 color.rgb(
49, 27,
146)

color.olive #808000 color.rgb(
128, 128,
0)

color.orange #FF9800 color.rgb(
255, 152,
0)

color.purple #9C27B0 color.rgb(
156, 39,
176)

color.red #FF5252 color.rgb(
255, 82,
82)

color.silver #B2B5BE color.rgb(
178, 181,
190)

color.teal #00897B color.rgb(
0, 137,
123)

color.white #FFFFFF color.rgb(
255, 255,
255)

Name Hex
RGB
values

color.yellow #FFEB3B color.rgb(
255, 235,
59)

In the following script, all plots use the same color.olive color with a transparency of 40, but
expressed in different ways. All five methods are functionally equivalent:

//@version=5
indicator("", "", true)
// ———— Transparency (#99) is included in the hex value.
plot(ta.sma(close, 10), "10", #80800099)
// ———— Transparency is included in the color-generating function's arguments.
plot(ta.sma(close, 30), "30", color.new(color.olive, 40))
plot(ta.sma(close, 50), "50", color.rgb(128, 128, 0, 40))
 // ———— Use `transp` parameter (deprecated and advised against)
plot(ta.sma(close, 70), "70", color.olive, transp = 40)
plot(ta.sma(close, 90), "90", #808000, transp = 40)

Note

The last two plot() calls specify transparency using the transp parameter. This use should be

avoided as the transp is deprecated in Pine Script® v5. Using the transp parameter to define
transparency is not as flexible because it requires an argument of input integer type, which entails it

https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_color%7Bdot%7Dolive

must be known before the script is executed, and so cannot be calculated dynamically, as your script
executes bar to bar. Additionally, if you use a color argument that already includes transparency
information, as is done in the next three plot() calls, any argument used for the transp parameter
would have no effect. This is also true for other functions with a transp parameter.

The colors in the previous script do not vary as the script executes bar to bar. Sometimes, however,
colors need to be created as the script executes on each bar because they depend on conditions that
are unknown at compile time, or when the script begins execution on bar zero. For those cases,
programmers have two options:

1. Use conditional statements to select colors from a few pre-determined base colors.
2. Build new colors dynamically, by calculating them as the script executes bar to bar, to

implement color gradients, for example.

Conditional coloring
Let’s say you want to color a moving average in different colors, depending on some conditions you
define. To do so, you can use a conditional statement that will select a different color for each of
your states. Let’s start by coloring a moving average in a bull color when it’s rising, and in a bear
color when it’s not:

//@version=5
indicator("Conditional colors", "", true)
int lengthInput = input.int(20, "Length", minval = 2)
color maBullColorInput = input.color(color.green, "Bull")
color maBearColorInput = input.color(color.maroon, "Bear")
float ma = ta.sma(close, lengthInput)
// Define our states.
bool maRising = ta.rising(ma, 1)

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#id5
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

// Build our color.
color c_ma = maRising ? maBullColorInput : maBearColorInput
plot(ma, "MA", c_ma, 2)

Note that:

• We provide users of our script a selection of colors for our bull/bear colors.
• We define an maRising boolean variable which will hold true when the moving average

is higher on the current bar than it was on the last.
• We define a c_ma color variable that is assigned one of our two colors, depending on the

value of the maRising boolean. We use the ? : ternary operator to write our conditional
statement.

You can also use conditional colors to avoid plotting under certain conditions. Here, we plot high
and low pivots using a line, but we do not want to plot anything when a new pivot comes in, to
avoid the joints that would otherwise appear in pivot transitions. To do so, we test for pivot changes
and use na as the color value when a change is detected, so that no line is plotted on that bar:

//@version=5
indicator("Conditional colors", "", true)
int legsInput = input.int(5, "Pivot Legs", minval = 1)
color pHiColorInput = input.color(color.olive, "High pivots")
color pLoColorInput = input.color(color.orange, "Low pivots")
// Intialize the pivot level variables.
var float pHi = na
var float pLo = na
// When a new pivot is detected, save its value.
pHi := nz(ta.pivothigh(legsInput, legsInput), pHi)
pLo := nz(ta.pivotlow(legsInput, legsInput), pLo)
// When a new pivot is detected, do not plot a color.

https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_%7Bquestion%7D%7Bcolon%7D

plot(pHi, "High", ta.change(pHi) ? na : pHiColorInput, 2, plot.style_line)
plot(pLo, "Low", ta.change(pLo) ? na : pLoColorInput, 2, plot.style_line)

To undertand how this code works, one must first know that ta.pivothigh() and ta.pivotlow(), used
as they are here without an argument to the source parameter, will return a value when they find a
high/low pivot, otherwise they return na.

When we test the value returned by the pivot function for na using the nz() function, we allow the
value returned to be assigned to the pHi or pLo variables only when it is not na, otherwise the
previous value of the variable is simply reassigned to it, which has no impact on its value. Keep in
mind that previous values of pHi and pLo are preserved bar to bar because we use the var keyword
when initializing them, which causes the initialization to only occur on the first bar.

All that’s left to do next is, when we plot our lines, to insert a ternary conditional statement that will
yield na for the color when the pivot value changes, or the color selected in the script’s inputs when
the pivot level does not change.

Calculated colors
Using functions like color.new(), color.rgb() and color.from_gradient(), one can build colors on the
fly, as the script executes bar to bar.

color.new() is most useful when you need to generate different transparency levels from a base
color.

color.rgb() is useful when you need to build colors dynamically from red, green, blue, or
tranparency components. While color.rgb() creates a color, its sister functions color.r(), color.g(),
color.b() and color.t() can be used to extract the red, green, blue or transparency values from a color,
which can in turn be used to generate a variant.

color.from_gradient() is useful to create linear gradients between two base colors. It determines
which intermediary color to use by evaluating a source value against minimum and maximum
values.

color.new()

Let’s put color.new(color, transp) to use to create different transparencies for volume columns using
one of two bull/bear base colors:

//@version=5
indicator("Volume")
// We name our color constants to make them more readable.
var color GOLD_COLOR = #CCCC00ff
var color VIOLET_COLOR = #AA00FFff
color bullColorInput = input.color(GOLD_COLOR, "Bull")
color bearColorInput = input.color(VIOLET_COLOR, "Bear")
int levelsInput = input.int(10, "Gradient levels", minval = 1)
// We initialize only once on bar zero with `var`, otherwise the count would
reset to zero on each bar.
var float riseFallCnt = 0
// Count the rises/falls, clamping the range to: 1 to `i_levels`.
riseFallCnt := math.max(1, math.min(levelsInput, riseFallCnt + math.sign(volume
- nz(volume[1]))))
// Rescale the count on a scale of 80, reverse it and cap transparency to <80 so
that colors remains visible.
float transparency = 80 - math.abs(80 * riseFallCnt / levelsInput)

https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dnew
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#id7
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dfrom_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dt
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Db
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dg
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dr
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Drgb
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Drgb
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dfrom_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Drgb
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dnew
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#id6
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_nz
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dpivotlow
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dpivothigh

// Build the correct transparency of either the bull or bear color.
color volumeColor = color.new(close > open ? bullColorInput : bearColorInput,
transparency)
plot(volume, "Volume", volumeColor, 1, plot.style_columns)

Note that:

• In the next to last line of our script, we dynamically calculate the column color by varying
both the base color used, depending on whether the bar is up or down, and the transparency
level, which is calculated from the cumulative rises or falls of volume.

• We offer the script user control over not only the base bull/bear colors used, but also on the
number of brightness levels we use. We use this value to determine the maximum number of
rises or falls we will track. Giving users the possiblity to manage this value allows them to
adapt the indicator’s visuals to the timeframe or market they use.

• We take care to control the maximum level of transparency we use so that it never goes
higher than 80. This ensures our colors always retain some visibility.

• We also set the minimum value for the number of levels to 1 in the inputs. When the user
selects 1, the volume columns will be either in bull or bear color of maximum brightness—
or transparency zero.

color.rgb()

In our next example we use color.rgb(red, green, blue, transp) to build colors from RGBA values.
We use the result in a holiday season gift for our friends, so they can bring their TradingView charts
to parties:

//@version=5
indicator("Holiday candles", "", true)
float r = math.random(0, 255)
float g = math.random(0, 255)
float b = math.random(0, 255)
float t = math.random(0, 100)
color holidayColor = color.rgb(r, g, b, t)
plotcandle(open, high, low, close, color = c_holiday, wickcolor = holidayColor,
bordercolor = c_holiday)

Note that:

• We generate values in the zero to 255 range for the red, green and blue channels, and in the
zero to 100 range for transparency. Also note that because math.random() returns float
values, the float 0.0-100.0 range provides access to the full 0-255 transparency values of the
underlying alpha channel.

• We use the math.random(min, max, seed) function to generate pseudo-random values. We do
not use an argument for the third parameter of the function: seed. Using it is handy when
you want to ensure the repeatability of the function’s results. Called with the same seed, it
will produce the same sequence of values.

color.from_gradient()

Our last examples of color calculations will use color.from_gradient(value, bottom_value,
top_value, bottom_color, top_color). Let’s first use it in its simplest form, to color a CCI signal in a
version of the indicator that otherwise looks like the built-in:

https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dfrom_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dfrom_gradient
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#id9
https://www.tradingview.com/pine-script-reference/v5/#fun_math%7Bdot%7Drandom
https://www.tradingview.com/pine-script-reference/v5/#fun_math%7Bdot%7Drandom
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Drgb
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#id8

//@version=5
indicator(title="CCI line gradient", precision=2, timeframe="")
var color GOLD_COLOR = #CCCC00
var color VIOLET_COLOR = #AA00FF
var color BEIGE_COLOR = #9C6E1B
float srcInput = input.source(close, title="Source")
int lenInput = input.int(20, "Length", minval = 5)
color bullColorInput = input.color(GOLD_COLOR, "Bull")
color bearColorInput = input.color(BEIGE_COLOR, "Bear")
float signal = ta.cci(srcInput, lenInput)
color signalColor = color.from_gradient(signal, -200, 200, bearColorInput,
bullColorInput)
plot(signal, "CCI", signalColor)
bandTopPlotID = hline(100, "Upper Band", color.silver, hline.style_dashed)
bandBotPlotID = hline(-100, "Lower Band", color.silver, hline.style_dashed)
fill(bandTopPlotID, bandBotPlotID, color.new(BEIGE_COLOR, 90), "Background")

Note that:

• To calculate the gradient, color.from_gradient() requires minimum and maximum values
against which the argument used for the value parameter will be compared. The fact that
we want a gradient for an unbounded signal like CCI (i.e., without fixed boundaries such as
RSI, which always oscillates between 0-100), does not entail we cannot use
color.from_gradient(). Here, we solve our conundrum by providing values of -200 and 200
as arguments. They do not represent the real minimum and maximum values for CCI, but
they are at levels from which we do not mind the colors no longer changing, as whenever
the series is outside the bottom_value and top_value limits, the colors used for
bottom_color and top_color will apply.

• The color progression calculated by color.from_gradient() is linear. If the value of the series
is halfway between the bottom_value and top_value arguments, the generated
color’s RGBA components will also be halfway between those of bottom_color and
top_color.

• Many common indicator calculations are available in Pine Script® as built-in functions.
Here we use ta.cci() instead of calculating it the long way.

The argument used for value in color.from_gradient() does not necessarily have to be the value of
the line we are calculating. Anything we want can be used, as long as arguments for
bottom_value and top_value can be supplied. Here, we enhance our CCI indicator by
coloring the band using the number of bars since the signal has been above/below the centerline:

//@version=5
indicator(title="CCI line gradient", precision=2, timeframe="")
var color GOLD_COLOR = #CCCC00
var color VIOLET_COLOR = #AA00FF
var color GREEN_BG_COLOR = color.new(color.green, 70)
var color RED_BG_COLOR = color.new(color.maroon, 70)
float srcInput = input.source(close, "Source")
int lenInput = input.int(20, "Length", minval = 5)
int stepsInput = input.int(50, "Gradient levels", minval = 1)
color bullColorInput = input.color(GOLD_COLOR, "Line: Bull", inline = "11")
color bearColorInput = input.color(VIOLET_COLOR, "Bear", inline = "11")
color bullBgColorInput = input.color(GREEN_BG_COLOR, "Background: Bull", inline
= "12")

https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dfrom_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dcci
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dfrom_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dfrom_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dfrom_gradient

color bearBgColorInput = input.color(RED_BG_COLOR, "Bear", inline = "12")

// Plot colored signal line.
float signal = ta.cci(srcInput, lenInput)
color signalColor = color.from_gradient(signal, -200, 200,
color.new(bearColorInput, 0), color.new(bullColorInput, 0))
plot(signal, "CCI", signalColor, 2)

// Detect crosses of the centerline.
bool signalX = ta.cross(signal, 0)
// Count no of bars since cross. Capping it to the no of steps from inputs.
int gradientStep = math.min(stepsInput, nz(ta.barssince(signalX)))
// Choose bull/bear end color for the gradient.
color endColor = signal > 0 ? bullBgColorInput : bearBgColorInput
// Get color from gradient going from no color to `c_endColor`
color bandColor = color.from_gradient(gradientStep, 0, stepsInput, na, endColor)
bandTopPlotID = hline(100, "Upper Band", color.silver, hline.style_dashed)
bandBotPlotID = hline(-100, "Lower Band", color.silver, hline.style_dashed)
fill(bandTopPlotID, bandBotPlotID, bandColor, title = "Band")

Note that:

• The signal plot uses the same base colors and gradient as in our previous example. We have
however increased the width of the line from the default 1 to 2. It is the most important
component of our visuals; increasing its width is a way to give it more prominence, and
ensure users are not distracted by the band, which has become busier than it was in its
original, flat beige color.

• The fill must remain unobtrusive for two reasons. First, it is of secondary importance to the
visuals, as it provides complementary information, i.e., the duration for which the signal has
been in bull/bear territory. Second, since fills have a greater z-index than plots, the fill will
cover the signal plot. For these reasons, we make the fill’s base colors fairly transparent, at
70, so they do not mask the plots. The gradient used for the band starts with no color at all
(see the na used as the argument to bottom_color in the color.from_gradient() call), and
goes to the base bull/bear colors from the inputs, which the conditional, c_endColor color
variable contains.

• We provide users with distinct bull/bear color selections for the line and the band.
• When we calculate the gradientStep variable, we use nz() on ta.barssince() because in

early bars of the dataset, when the condition tested has not occurred yet, ta.barssince() will
return na. Because we use nz(), the value returned is replaced with zero in those cases.

Mixing transparencies
In this example we take our CCI indicator in another direction. We will build dynamically adjusting
extremes zone buffers using a Donchian Channel (historical highs/lows) calculated from the CCI.
We build the top/bottom bands by making them 1/4 the height of the DC. We will use a dynamically
adjusting lookback to calculate the DC. To modulate the lookback, we will calculate a simple
measure of volatility by keeping a ratio of a short-period ATR to a long one. When that ratio is
higher than 50 of its last 100 values, we consider the volatility high. When the volatility is high/low,
we decrease/increase the lookback.

Our aim is to provide users of our indicator with:

• The CCI line colored using a bull/bear gradient, as we illustrated in our most recent
examples.

• The top and bottom bands of the Donchian Channel, filled in such a way that their color
darkens as a historical high/low becomes older and older.

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#id10
https://www.tradingview.com/pine-script-reference/v5/#fun_nz
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dbarssince
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dbarssince
https://www.tradingview.com/pine-script-reference/v5/#fun_nz
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dfrom_gradient
https://www.tradingview.com/pine-script-reference/v5/#var_na

• A way to appreciate the state of our volatility measure, which we will do by painting the
background with one color whose intensity increases when volatility increases.

This is what our indicator looks like using the light theme:

And with the dark theme:

//@version=5
indicator("CCI DC", precision = 6)
color GOLD_COLOR = #CCCC00ff
color VIOLET_COLOR = #AA00FFff
int lengthInput = input.int(20, "Length", minval = 5)
color bullColorInput = input.color(GOLD_COLOR, "Bull")
color bearColorInput = input.color(VIOLET_COLOR, "Bear")

// ————— Function clamps `val` between `min` and `max`.
clamp(val, min, max) =>
 math.max(min, math.min(max, val))

// ————— Volatility expressed as 0-100 value.
float v = ta.atr(lengthInput / 5) / ta.atr(lengthInput * 5)
float vPct = ta.percentrank(v, lengthInput * 5)

// ————— Calculate dynamic lookback for DC. It increases/decreases on low/high
volatility.
bool highVolatility = vPct > 50
var int lookBackMin = lengthInput * 2
var int lookBackMax = lengthInput * 10
var float lookBack = math.avg(lookBackMin, lookBackMax)
lookBack += highVolatility ? -2 : 2
lookBack := clamp(lookBack, lookBackMin, lookBackMax)

// ————— Dynamic lookback length Donchian channel of signal.
float signal = ta.cci(close, lengthInput)
// `lookBack` is a float; need to cast it to int to be used a length.
float hiTop = ta.highest(signal, int(lookBack))
float loBot = ta.lowest(signal, int(lookBack))
// Get margin of 25% of the DC height to build high and low bands.
float margin = (hiTop - loBot) / 4
float hiBot = hiTop - margin
float loTop = loBot + margin
// Center of DC.
float center = math.avg(hiTop, loBot)

// ————— Create colors.
color signalColor = color.from_gradient(signal, -200, 200, bearColorInput,
bullColorInput)
// Bands: Calculate transparencies so the longer since the hi/lo has changed,
// the darker the color becomes. Cap highest transparency to 90.
float hiTransp = clamp(100 - (100 * math.max(1,
nz(ta.barssince(ta.change(hiTop)) + 1)) / 255), 60, 90)
float loTransp = clamp(100 - (100 * math.max(1,
nz(ta.barssince(ta.change(loBot)) + 1)) / 255), 60, 90)
color hiColor = color.new(bullColorInput, hiTransp)
color loColor = color.new(bearColorInput, loTransp)
// Background: Rescale the 0-100 range of `vPct` to 0-25 to create 75-100
transparencies.
color bgColor = color.new(color.gray, 100 - (vPct / 4))

// ————— Plots
// Invisible lines for band fills.
hiTopPlotID = plot(hiTop, color = na)
hiBotPlotID = plot(hiBot, color = na)
loTopPlotID = plot(loTop, color = na)
loBotPlotID = plot(loBot, color = na)
// Plot signal and centerline.
p_signal = plot(signal, "CCI", signalColor, 2)
plot(center, "Centerline", color.silver, 1)

// Fill the bands.
fill(hiTopPlotID, hiBotPlotID, hiColor)
fill(loTopPlotID, loBotPlotID, loColor)

// ————— Background.
bgcolor(bgColor)

Note that:

• We clamp the transparency of the background to a 100-75 range so that it doesn’t
overwhelm. We also use a neutral color that will not distract too much. The darker the
background is, the higher our measure of volatility.

• We also clamp the transparency values for the band fills between 60 and 90. We use 90 so
that when a new high/low is found and the gradient resets, the starting transparency makes
the color somewhat visible. We do not use a transparency lower than 60 because we don’t
want those bands to hide the signal line.

• We use the very handy ta.percentrank() function to generate a 0-100 value from our ATR
ratio measuring volatility. It is useful to convert values whose scale is unknown into known
values that can be used to produce transparencies.

• Because we must clamp values three times in our script, we wrote an f_clamp() function,
instead of explicitly coding the logic three times.

Tips

Designing usable colors schemes

If you write scripts intended for other traders, try to avoid colors that will not work well in some
environments, whether it be for plots, labels, tables or fills. At a minimum, test your visuals to
ensure they perform satisfactorily with both the light and dark TradingView themes; they are the
most commonly used. Colors such as black and white, for example, should be avoided.

Build the appropriate inputs to provide script users the flexibility to adapt your script’s visuals to
their particular environments.

Take care to build a visual hierarchy of the colors you use that matches the relative importance of
your script’s visual components. Good designers understand how to achieve the optimal balance of
color and weight so the eye is naturally drawn to the most important elements of the design. When
you make everything stand out, nothing does. Make room for some elements to stand out by toning
down the visuals surrounding it.

Providing a selection of color presets in your inputs — rather than a single color that can be
changed — can help color-challenged users. Our Technical Ratings demonstrates one way of
achieving this.

https://www.tradingview.com/script/Jdw7wW2g-Technical-Ratings/
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#id12
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#id11
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dpercentrank

Plot crisp lines

It is best to use zero transparency to plot the important lines in your visuals, to keep them crisp.
This way, they will show through fills more precisely. Keep in mind that fills have a higher z-index
than plots, so they are placed on top of them. A slight increase of a line’s width can also go a long
way in making it stand out.

If you want a special plot to stand out, you can also give it more importance by using multiple plots
for the same line. These are examples where we modulate the successive width and transparency of
plots to achieve this:

//@version=5
indicator("")
plot(high, "", color.new(color.orange, 80), 8)
plot(high, "", color.new(color.orange, 60), 4)
plot(high, "", color.new(color.orange, 00), 1)

plot(hl2, "", color.new(color.orange, 60), 4)
plot(hl2, "", color.new(color.orange, 00), 1)

plot(low, "", color.new(color.orange, 0), 1)

Customize gradients

When building gradients, adapt them to the visuals they apply to. If you are using a gradient to
color candles, for example, it is usually best to limit the number of steps in the gradient to ten or
less, as it is more difficult for the eye to perceive intensity variations of discrete objects. As we did
in our examples, cap minimum and maximum transparency levels so your visual elements remain
visible and do not overwhelm when it’s not necessary.

Color selection through script settings

The type of color you use in your scripts has an impact on how users of your script will be able to
change the colors of your script’s visuals. As long as you don’t use colors whose RGBA
components have to be calculated at runtime, script users will be able to modify the colors you use
by going to your script’s “Settings/Style” tab. Our first example script on this page meets that
criteria, and the following screenshot shows how we used the script’s “Settings/Style” tab to change
the color of the first moving average:

If your script uses a calculated color, i.e., a color where at least one of its RGBA components can
only be known at runtime, then the “Settings/Style” tab will NOT offer users the usual color
widgets they can use to modify your plot colors. Plots of the same script not using calculated colors
will also be affected. In this script, for example, our first plot() call uses a calculated color, and the
second one doesn’t:

//@version=5
indicator("Calculated colors", "", true)
float ma = ta.sma(close, 20)
float maHeight = ta.percentrank(ma, 100)
float transparency = math.min(80, 100 - maHeight)
// This plot uses a calculated color.
plot(ma, "MA1", color.rgb(156, 39, 176, transparency), 2)

https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#id15
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#id14
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#id13

// This plot does not use a calculated color.
plot(close, "Close", color.blue)

The color used in the first plot is a calculated color because its transparency can only be known at
runtime. It is calculated using the relative position of the moving average in relation to its past 100
values. The greater percentage of past values are below the current value, the higher the 0-100 value
of maHeight will be. Since we want the color to be the darkest when maHeight is 100, we
subtract 100 from it to obtain the zero transparency then. We also cap the calculated
transparency value to a maximum of 80 so that it always remains visible.

Because that calculated color is used in our script, the “Settings/Style” tab will not show any color
widgets:

The solution to enable script users to control the colors used is to supply them with custom inputs,
as we do here:

//@version=5
indicator("Calculated colors", "", true)
color maInput = input.color(color.purple, "MA")
color closeInput = input.color(color.blue, "Close")
float ma = ta.sma(close, 20)
float maHeight = ta.percentrank(ma, 100)
float transparency = math.min(80, 100 - maHeight)
// This plot uses a calculated color.
plot(ma, "MA1", color.new(maInput, transparency), 2)
// This plot does not use a calculated color.
plot(close, "Close", closeInput)

Notice how our script’s “Settings” now show an “Inputs” tab, where we have created two color
inputs. The first one uses color.purple as its default value. Whether the script user changes that color
or not, it will then be used in a color.new() call to generate a calculated transparency in the plot()
call. The second input uses as its default the built-in color.blue color we previously used in the
plot() call, and simply use it as is in the second plot() call.

Fills
• Introduction
• `plot()` and `hline()` fills
• Line fills

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Fills.html#line-fills
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Fills.html#plot-and-hline-fills
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Fills.html#introduction
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_color%7Bdot%7Dblue
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#var_color%7Bdot%7Dpurple
https://www.tradingview.com/

Introduction
There are two different mechanisms dedicated to filling the space between Pine visuals:

• The fill() function lets you color the background between either two plots plotted using
plot() or two horizontal lines plotted using hline().

• The linefill.new() function fills the space between lines created with line.new().

`plot()` and `hline()` fills
The fill() function has two signatures:

fill(plot1, plot2, color, title, editable, show_last, fillgaps) → void
fill(hline1, hline2, color, title, editable, fillgaps) → void

The arguments used for the plot1, plot2, hline1 and hline2 parameters must be the IDs
returned by the plot() and hline() calls. The fill() function is the only built-in function where these
IDs are used.

See in this first example how the IDs returned by the plot() and hline() calls are captured in the p1,
p2, p3, and h1, h2, h3 and h4 variables for reuse as fill() arguments:

//@version=5
indicator("Example 1")
p1 = plot(math.sin(high))
p2 = plot(math.cos(low))
p3 = plot(math.sin(close))
fill(p1, p3, color.new(color.red, 90))
fill(p2, p3, color.new(color.blue, 90))
h1 = hline(0)
h2 = hline(1.0)
h3 = hline(0.5)
h4 = hline(1.5)
fill(h1, h2, color.new(color.yellow, 90))
fill(h3, h4, color.new(color.lime, 90))

Because fill() requires two IDs from the same function, we sometimes need to use a plot() call
where we would have otherwise used an hline() call, as in this example:

//@version=5
indicator("Example 2")
src = close
ma = ta.sma(src, 10)
osc = 100 * (ma - src) / ma
oscPlotID = plot(osc)
// An `hline()` would not work here because two `plot()` calls are needed.
zeroPlotID = plot(0, "Zero", color.silver, 1, plot.style_circles)
fill(oscPlotID, zeroPlotID, color.new(color.blue, 90))

Because a “series color” can be used as an argument for the color parameter in fill(), you can use
constants like color.red or #FF001A, as well as expressions calculating the color on each bar,
as in this example:

https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Fills.html#id2
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Fills.html#id1

//@version=5
indicator("Example 3", "", true)
line1 = ta.sma(close, 5)
line2 = ta.sma(close, 20)
p1PlotID = plot(line1)
p2PlotID = plot(line2)
fill(p1PlotID, p2PlotID, line1 > line2 ? color.new(color.green, 90) :
color.new(color.red, 90))

Line fills
Linefills are objects that allow you to fill the space between two line drawings created via the
line.new() function. A linefill object is displayed on the chart when the linefill.new() function is
called. The function has the following signature:

linefill.new(line1, line2, color) → series linefill

The line1 and line2 arguments are the line IDs of the two lines to fill between. The color
argument is the color of the fill. Any two-line pair can only have one linefill between them, so
successive calls to linefill.new() on the same pair of lines will replace the previous linefill with a
new one. The function returns the ID of the linefill object it created, which can be saved in a
variable for use in linefill.set_color() call that will change the color of an existing linefill.

The behavior of linefills is dependent on the lines they are attached to. Linefills cannot be moved
directly; their coordinates follow those of the lines they are tied to. If both lines extend in the same
direction, the linefill will also extend.

Note that for line extensions to work correctly, a line’s x1 coordinate must be less than its x2
coordinate. If a line’s x1 argument is greater than its x2 argument and extend.left is used, the
line will actually extend to the right because x2 is assumed to be the rightmost x coordinate.

In the example below, our indicator draws two lines connecting the last two high and low pivot
points of the chart. We extend the lines to the right to project the short-term movement of the chart,
and fill the space between them to enhance the visibility of the channel the lines create:

https://www.tradingview.com/pine-script-reference/v5/#fun_linefill%7Bdot%7Dset_color
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dnew
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Fills.html#id3

//@version=5
indicator("Channel", overlay = true)

LEN_LEFT = 15
LEN_RIGHT = 5
pH = ta.pivothigh(LEN_LEFT, LEN_RIGHT)
pL = ta.pivotlow(LEN_LEFT, LEN_RIGHT)

// Bar indices of pivot points
pH_x1 = ta.valuewhen(pH, bar_index, 1) - LEN_RIGHT
pH_x2 = ta.valuewhen(pH, bar_index, 0) - LEN_RIGHT
pL_x1 = ta.valuewhen(pL, bar_index, 1) - LEN_RIGHT
pL_x2 = ta.valuewhen(pL, bar_index, 0) - LEN_RIGHT
// Price values of pivot points
pH_y1 = ta.valuewhen(pH, pH, 1)
pH_y2 = ta.valuewhen(pH, pH, 0)
pL_y1 = ta.valuewhen(pL, pL, 1)
pL_y2 = ta.valuewhen(pL, pL, 0)

if barstate.islastconfirmedhistory
 // Lines
 lH = line.new(pH_x1, pH_y1, pH_x2, pH_y2, extend = extend.right)
 lL = line.new(pL_x1, pL_y1, pL_x2, pL_y2, extend = extend.right)
 // Fill
 fillColor = switch
 pH_y2 > pH_y1 and pL_y2 > pL_y1 => color.green
 pH_y2 < pH_y1 and pL_y2 < pL_y1 => color.red
 => color.silver
 linefill.new(lH, lL, color.new(fillColor, 90))

Inputs
• Introduction
• Input functions
• Input function parameters
• Input types

• Simple input
• Integer input
• Float input
• Boolean input
• Color input
• Timeframe input
• Symbol input
• Session input
• Source input
• Time input

• Other features affecting Inputs
• Tips

Introduction
Inputs allow scripts to receive values that users can change. Using them for key values will make
your scripts more adaptable to user preferences.

The following script plots a 20-period simple moving average (SMA) using ta.sma(close,
20). While it is simple to write, it is not very flexible because that specific MA is all it will ever
plot:

//@version=5
indicator("MA", "", true)

https://www.tradingview.com/support/solutions/43000502589
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#tips
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#other-features-affecting-inputs
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#time-input
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#source-input
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#session-input
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#symbol-input
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#timeframe-input
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#color-input
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#boolean-input
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#float-input
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#integer-input
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#simple-input
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#input-types
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#input-function-parameters
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#input-functions
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#introduction

plot(ta.sma(close, 20))

If instead we write our script this way, it becomes much more flexible because its users will be able
to select the source and the length they want to use for the MA’s calculation:

//@version=5
indicator("MA", "", true)
sourceInput = input(close, "Source")
lengthInput = input(20, "Length")
plot(ta.sma(sourceInput, lengthInput))

Inputs can only be accessed when a script is running on the chart. Script users access them through
the script’s “Settings” dialog box, which can be reached by either:

• Double-clicking on the name of an on-chart indicator
• Right-clicking on the script’s name and choosing the “Settings” item from the dropdown

menu
• Choosing the “Settings” item from the “More” menu icon (three dots) that appears when one

hovers over the indicator’s name on the chart
• Double-clicking on the indicator’s name from the Data Window (fourth icon down to the

right of the chart)

The “Settings” dialog box always contains the “Style” and “Visibility” tabs, which allow users to
specify their preferences about the script’s visuals and the chart timeframes where it should be
visible.

When a script contains calls to input.*() functions, an “Inputs” tab appears in the “Settings”
dialog box.

In the flow of a script’s execution, inputs are processed when the script is already on a chart and a
user changes values in the “Inputs” tab. The changes trigger a re-execution of the script on all the
chart bars, so when a user changes an input value, your script recalculates using that new value.

Input functions
The following input functions are available:

• input()
• input.int()
• input.float()
• input.bool()
• input.color()
• input.string()
• input.timeframe()
• input.symbol()
• input.price()
• input.source()
• input.session()
• input.time()

A specific input widget is created in the “Inputs” tab to accept each type of input. Unless otherwise
specified in the input.*() call, each input appears on a new line of the “Inputs” tab, in the order
the input.*() calls appear in the script.

Our Style guide recommends placing input.*() calls at the beginning of the script.

Input function definitions typically contain many parameters, which allow you to control the default
value of inputs, their limits, and their organization in the “Inputs” tab.

An input*.() call being just another function call in Pine Script®, its result can be combined
with arithmetic, comparison, logical or ternary operators to form an expression to be assigned to the
variable. Here, we compare the result of our call to input.string() to the string "On". The
expression’s result is then stored in the plotDisplayInput variable. Since that variable holds a
true or false value, it is a of “input bool” type:

//@version=5
indicator("Input in an expression`", "", true)
bool plotDisplayInput = input.string("On", "Plot Display", options = ["On",
"Off"]) == "On"
plot(plotDisplayInput ? close : na)

All values returned by input.*() functions except “source” ones are of the “input” form (see the
section on forms for more information).

Input function parameters
The parameters common to all input functions are: defval, title, tooltip, inline and
group. Some parameters are used by the other input functions: options, minval, maxval,
step and confirm.

All these parameters expect arguments of “const” form (except if it’s an input used for a “source”,
which returns a “series float” result). This means they must be known at compile time and cannot
change during the script’s execution. Because the result of input.*() function is always of
“input” or “series” form, it follows that the result of one input.*() function call cannot be used

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#id3
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-forms
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dstring
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#pageoperators-ternaryoperator
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#pageoperators-logicaloperators
https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#pageoperators-arithmeticoperators
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#pagestyleguide
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dtime
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsession
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsource
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dprice
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsymbol
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dtimeframe
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dstring
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dbool
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dfloat
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dint
https://www.tradingview.com/pine-script-reference/v5/#fun_input
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#id2

as an argument in a subsequent input.*() call because the “input” form is stronger than the
“const” form.

Let’s go over each parameter:

• defval is the first parameter of all input functions. It is the default value that will appear in
the input widget. It requires an argument of the type of input value the function is used for.

• title requires a “const string” argument. It is the field’s label.
• tooltip requires a “const string” argument. When the parameter is used, a question mark

icon will appear to the right of the field. When users hover over it, the tooltip’s text will
appear. Note that if multiple input fields are grouped on one line using inline, the tooltip
will always appear to the right of the rightmost field, and display the text of the last
tooltip argument used in the line. Newlines (\n) are supported in the argument string.

• inline requires a “const string” argument. Using the same argument for the parameter in
multiple input.*() calls will group their input widgets on the same line. There is a limit
to the width the “Inputs” tab will expand, so a limited quantity of input fields can be fitted
on one line. Using one input.*() call with a unique argument for inline has the effect
of bringing the input field left, immediately after the label, foregoing the default left-
alignment of all input fields used when no inline argument is used.

• group requires a “const string” argument. It used to group any number of inputs in the
same section. The string used as the group argument becomes the section’s heading. All
input.*() calls to be grouped together must use the same string for their group
argument.

• options requires a comma-separated list of elements enclosed in square brackets (e.g.,
["ON", "OFF"]. It is used to create a dropdown menu offering the list’s elements in the
form of menu selections. Only one menu item can be selected. When an options list is
used, the defval value must be one of the list’s elements. When options is used in input
functions allowing minval, maxval or step, those parameters cannot be used
simultaneously.

• minval requires a “const int/float” argument, depending on the type of the defval value.
It is the minimum valid value for the input field.

• maxval requires a “const int/float” argument, depending on the type of the defval value.
It is the maximum valid value for the input field.

• step is the increment by which the field’s value will move when the widget’s up/down
arrows are used.

• confirm requires a “const bool” (true or false) argument. This parameter affect the
behavior of the script when it is added to a chart. input.*() calls using confirm =
true will cause the “Settings/Inputs” tab to popup when the script is added to the chart.
confirm is useful to ensure that users configure a particular field.

The minval, maxval and step parameters are only present in the signature of the input.int() and
input.float() functions.

Input types
The next sections explain what each input function does. As we proceed, we will explore the
different ways you can use input functions and organize their display.

Simple input

input() is a simple, generic function that supports the fundamental Pine Script® types: “int”, “float”,

https://www.tradingview.com/pine-script-reference/v5/#fun_input
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#id4
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dfloat
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dint

“bool”, “color” and “string”. It also supports “source” inputs, which are price-related values such as
close, hl2, hlc3, and hlcc4, or which can be used to receive the output value of another script.

Its signature is:

input(defval, title, tooltip, inline, group) → input int/float/bool/color/string
| series float

The function automatically detects the type of input by analyzing the type of the defval argument
used in the function call. This script shows all the supported types and the form-type returned by the
function when used with defval arguments of different types:

//@version=5
indicator("`input()`", "", true)
a = input(1, "input int")
b = input(1.0, "input float")
c = input(true, "input bool")
d = input(color.orange, "input color")
e = input("1", "input string")
f = input(close, "series float")
plot(na)

Integer input

Two signatures exist for the input.int() function; one when options is not used, the other when it
is:

input.int(defval, title, minval, maxval, step, tooltip, inline, group, confirm)
→ input int
input.int(defval, title, options, tooltip, inline, group, confirm) → input int

This call uses the options parameter to propose a pre-defined list of lengths for the MA:

//@version=5
indicator("MA", "", true)
maLengthInput = input.int(10, options = [3, 5, 7, 10, 14, 20, 50, 100, 200])
ma = ta.sma(close, maLengthInput)
plot(ma)

This one uses the minval parameter to limit the length:

//@version=5
indicator("MA", "", true)
maLengthInput = input.int(10, minval = 2)
ma = ta.sma(close, maLengthInput)
plot(ma)

The version with the options list uses a dropdown menu for its widget. When the options
parameter is not used, a simple input widget is used to enter the value.

Float input

Two signatures exist for the input.float() function; one when options is not used, the other when
it is:

input.int(defval, title, minval, maxval, step, tooltip, inline, group, confirm)
→ input int

https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dfloat
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#id7
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dint
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#id6
https://www.tradingview.com/pine-script-reference/v5/#var_hlcc4
https://www.tradingview.com/pine-script-reference/v5/#var_hlc3
https://www.tradingview.com/pine-script-reference/v5/#hl2
https://www.tradingview.com/pine-script-reference/v5/#var_close

input.int(defval, title, options, tooltip, inline, group, confirm) → input int

Here, we use a “float” input for the factor used to multiple the standard deviation, to calculate
Bollinger Bands:

//@version=5
indicator("MA", "", true)
maLengthInput = input.int(10, minval = 1)
bbFactorInput = input.float(1.5, minval = 0, step = 0.5)
ma = ta.sma(close, maLengthInput)
bbWidth = ta.stdev(ma, maLengthInput) * bbFactorInput
bbHi = ma + bbWidth
bbLo = ma - bbWidth
plot(ma)
plot(bbHi, "BB Hi", color.gray)
plot(bbLo, "BB Lo", color.gray)

The input widgets for floats are similar to the ones used for integer inputs.

Boolean input

Let’s continue to develop our script further, this time by adding a boolean input to allow users to
toggle the display of the BBs:

//@version=5
indicator("MA", "", true)
maLengthInput = input.int(10, "MA length", minval = 1)
bbFactorInput = input.float(1.5, "BB factor", inline = "01", minval = 0, step =
0.5)
showBBInput = input.bool(true, "Show BB", inline = "01")
ma = ta.sma(close, maLengthInput)
bbWidth = ta.stdev(ma, maLengthInput) * bbFactorInput
bbHi = ma + bbWidth
bbLo = ma - bbWidth
plot(ma, "MA", color.aqua)
plot(showBBInput ? bbHi : na, "BB Hi", color.gray)
plot(showBBInput ? bbLo : na, "BB Lo", color.gray)

Note that:

• We have added an input using input.bool() to set the value of showBBInput.
• We use the inline parameter in that input and in the one for bbFactorInput to bring

them on the same line. We use "01" for its argument in both cases. That is how the Pine

Script® compiler recognizes that they belong on the same line. The particular string used as
an argument is unimportant and does not appear anywhere in the “Inputs” tab; it is only used
to identify which inputs go on the same line.

• We have vertically aligned the title arguments of our input.*() calls to make them
easier to read.

• We use the showBBInput variable in our two plot() calls to plot conditionally. When the
user unchecks the checkbox of the showBBInput input, the variable’s value becomes
false. When that happens, our plot() calls plot the na value, which displays nothing. We
use true as the default value of the input, so the BBs plot by default.

• Because we use the inline parameter for the bbFactorInput variable, its input field in
the “Inputs” tab does not align vertically with that of maLengthInput, which doesn’t use
inline.

Color input

As is explained in the Color selection through script settings section of the “Colors” page, the color
selections that usually appear in the “Settings/Style” tab are not always available. When that is the
case, script users will have no means to change the colors your script uses. For those cases, it is
essential to provide color inputs if you want your script’s colors to be modifiable through the
script’s “Settings”. Instead of using the “Settings/Style” tab to change colors, you will then allow
your script users to change the colors using calls to input.color().

Suppose we wanted to plot our BBs in a ligther shade when the high and low values are
higher/lower than the BBs. You could use code like this to create your colors:

bbHiColor = color.new(color.gray, high > bbHi ? 60 : 0)
bbLoColor = color.new(color.gray, low < bbLo ? 60 : 0)

When using dynamic (or “series”) color components like the transparency here, the color widgets in
the “Settings/Style” will no longer appear. Let’s create our own, which will appear in our “Inputs”

https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dcolor
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#id9
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dbool
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#id8

tab:

//@version=5
indicator("MA", "", true)
maLengthInput = input.int(10, "MA length", inline = "01", minval = 1)
maColorInput = input.color(color.aqua, "", inline = "01")
bbFactorInput = input.float(1.5, "BB factor", inline = "02", minval = 0,
step = 0.5)
bbColorInput = input.color(color.gray, "", inline = "02")
showBBInput = input.bool(true, "Show BB", inline = "02")
ma = ta.sma(close, maLengthInput)
bbWidth = ta.stdev(ma, maLengthInput) * bbFactorInput
bbHi = ma + bbWidth
bbLo = ma - bbWidth
bbHiColor = color.new(bbColorInput, high > bbHi ? 60 : 0)
bbLoColor = color.new(bbColorInput, low < bbLo ? 60 : 0)
plot(ma, "MA", maColorInput)
plot(showBBInput ? bbHi : na, "BB Hi", bbHiColor, 2)
plot(showBBInput ? bbLo : na, "BB Lo", bbLoColor, 2)

Note that:

• We have added two calls to input.color() to gather the values of the maColorInput and
bbColorInput variables. We use maColorInput directly in the plot(ma, "MA",
maColorInput) call, and we use bbColorInput to build the bbHiColor and
bbLoColor variables, which modulate the transparency using the position of price relative
to the BBs. We use a conditional value for the transp value we call color.new() with, to
generate different transparencies of the same base color.

• We do not use a title argument for our new color inputs because they are on the same line
as other inputs allowing users to understand to which plots they apply.

• We have reorganized our inline arguments so they reflect the fact we have inputs grouped
on two distinct lines.

Timeframe input

Timeframe inputs can be useful when you want to be able to change the timeframe used to calculate
values in your scripts.

Let’s do away with our BBs from the previous sections and add a timeframe input to a simple MA
script:

//@version=5
indicator("MA", "", true)
tfInput = input.timeframe("D", "Timeframe")
ma = ta.sma(close, 20)
securityNoRepaint(sym, tf, src) =>
 request.security(sym, tf, src[barstate.isrealtime ? 1 : 0])
[barstate.isrealtime ? 0 : 1]
maHTF = securityNoRepaint(syminfo.tickerid, tfInput, ma)
plot(maHTF, "MA", color.aqua)

Note that:

• We use the input.timeframe() function to receive the timeframe input.
• The function creates a dropdown widget where some standard timeframes are proposed. The

list of timeframes also includes any you have favorated in the chart user interface.

https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dtimeframe
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#id10
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dcolor

• We use the tfInput in our request.security() call. We also use gaps =
barmerge.gaps_on in the call, so the function only returns data when the higher
timeframe has completed.

https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity

Symbol input

The input.symbol() function creates a widget that allows users to search and select symbols like
they would from the chart’s user interface.

Let’s add a symbol input to our script:

//@version=5
indicator("MA", "", true)
tfInput = input.timeframe("D", "Timeframe")
symbolInput = input.symbol("", "Symbol")
ma = ta.sma(close, 20)
securityNoRepaint(sym, tf, src) =>
 request.security(sym, tf, src[barstate.isrealtime ? 1 : 0])
[barstate.isrealtime ? 0 : 1]
maHTF = securityNoRepaint(symbolInput, tfInput, ma)
plot(maHTF, "MA", color.aqua)

Note that:

• The defval argument we use is an empty string. This causes request.security(), where we
use the symbolInput variable containing that input, to use the chart’s symbol by default.
If the user selects another symbol and wants to return to the default value using the chart’s
symbol, he will need to use the “Reset Settings” selection from the “Inputs” tab’s “Defaults”
menu.

• We use the securityNoRepaint() user-defined function to use request.security() in
such a way that it does not repaint; it only returns values when the higher timeframe has
completed.

Session input

Session inputs are useful to gather start-stop values for periods of time. The input.session() built-in
function creates an input widget allowing users to specify the beginning and end time of a session.
Selections can be made using a dropdown menu, or by entering time values in “hh:mm” format.

The value returned by input.session() is a valid string in session format. See the manual’s page on
sessions for more information.

Session information can also contain information on the days where the session is valid. We use an
input.string() function call here to input that day information:

//@version=5
indicator("Session input", "", true)
string sessionInput = input.session("0600-1700", "Session")
string daysInput = input.string("1234567", tooltip = "1 = Sunday, 7 = Saturday")
sessionString = sessionInput + ":" + daysInput
inSession = not na(time(timeframe.period, sessionString))
bgcolor(inSession ? color.silver : na)

Note that:

• This script proposes a default session of “0600-1700”.
• The input.string() call uses a tooltip to provide users with help on the format to use to enter

day information.
• A complete session string is built by concatenating the two strings the script receives as

inputs.
• We explicitly declare the type of our two inputs with the string keyword to make it clear

those variables will contain a string.
• We detect if the chart bar is in the user-defined session by calling time() with the session

https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#op_string
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dstring
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dstring
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#pagesessions
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsession
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsession
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#id12
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsymbol
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#id11

string. If the current bar’s time value (the time at the bar’s open) is not in the session, time()
returns na, so inSession will be true whenever time() returns a value that is not na.

Source input

Source inputs are useful to provide a selection of two types of sources:

• Price values, namely: open, high, low, close, hl2, hlc3, and ohlc4.
• The values plotted by other scripts on the chart. This can be useful to “link” two or more

scripts together by sending the output of one as an input to another script.

This script simply plots the user’s selection of source. We propose the high as the default value:

//@version=5
indicator("Source input", "", true)
srcInput = input.source(high, "Source")
plot(srcInput, "Src", color.new(color.purple, 70), 6)

https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_ohlc4
https://www.tradingview.com/pine-script-reference/v5/#var_hlc3
https://www.tradingview.com/pine-script-reference/v5/#var_hl2
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#id13
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_time

This shows a chart where, in addition to our script, we have loaded an “Arnaud Legoux Moving
Average” indicator. See here how we use our script’s source input widget to select the output of the
ALMA script as an input into our script. Because our script plots that source in a light-purple thick
line, you see the plots from the two scripts overlap because they plot the same value:

Time input

Time inputs use the input.time() function. The function returns a Unix time in milliseconds (see the
Time page for more information). This type of data also contains date information, so the
input.time() function returns a time and a date. That is the reason why its widget allows for the
selection of both.

Here, we test the bar’s time against an input value, and we plot an arrow when it is greater:

//@version=5
indicator("Time input", "T", true)
timeAndDateInput = input.time(timestamp("1 Aug 2021 00:00 +0300"), "Date and
time")
barIsLater = time > timeAndDateInput
plotchar(barIsLater, "barIsLater", "?", location.top, size = size.tiny)

Note that the defval value we use is a call to the timestamp() function.

Other features affecting Inputs
Some parameters of the indicator() function, when used, will populate the script’s “Inputs” tab with
a field. The parameters are timeframe and timeframe_gaps. An example:

//@version=5
indicator("MA", "", true, timeframe = "D", timeframe_gaps = false)
plot(ta.vwma(close, 10))

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#id15
https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dtime
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#pagetime
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dtime
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#id14

Tips
The design of your script’s inputs has an important impact on the usability of your scripts. Well-
designed inputs are more intuitively usable and make for a better user experience:

• Choose clear and concise labels (your input’s title argument).
• Choose your default values carefully.
• Provide minval and maxval values that will prevent your code from producing

unexpected results, e.g., limit the minimal value of lengths to 1 or 2, depending on the type
of MA you are using.

• Provide a step value that is congruent with the value you are capturing. Steps of 5 can be
more useful on a 0-200 range, for example, or steps of 0.05 on a 0.0-1.0 scale.

• Group related inputs on the same line using inline; bull and bear colors for example, or
the width and color of a line.

• When you have many inputs, group them into meaningful sections using group. Place the
most important sections at the top.

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#id16

• Do the same for individual inputs within sections.

It can be advantageous to vertically align different arguments of multliple input.*() calls in
your code. When you need to make global changes, this will allow you to use the Editor’s multi-
cursor feature to operate on all the lines at once.

Because It is sometimes necessary to use Unicode spaces to In order to achieve optimal alignment
in inputs. This is an example:

//@version=5
indicator("Aligned inputs", "", true)

var GRP1 = "Not aligned"
ma1SourceInput = input(close, "MA source", inline = "11", group = GRP1)
ma1LengthInput = input(close, "Length", inline = "11", group = GRP1)
long1SourceInput = input(close, "Signal source", inline = "12", group = GRP1)
long1LengthInput = input(close, "Length", inline = "12", group = GRP1)

var GRP2 = "Aligned"
// The three spaces after "MA source" are Unicode EN spaces (U+2002).
ma2SourceInput = input(close, "MA source ", inline = "21", group = GRP2)   
ma2LengthInput = input(close, "Length", inline = "21", group = GRP2)
long2SourceInput = input(close, "Signal source", inline = "22", group = GRP2)
long2LengthInput = input(close, "Length", inline = "22", group = GRP2)

plot(ta.vwma(close, 10))

Levels
• `hline()` levels
• Fills between levels

`hline()` levels
Levels are lines plotted using the hline() function. It is designed to plot horizontal levels using a
single color, i.e., it does not change on different bars. See the Levels section of the page on plot()
for alternative ways to plot levels when hline() won’t do what you need.

The function has the following signature:

hline(price, title, color, linestyle, linewidth, editable) → hline

hline() has a few constraints when compared to plot():

• Since the function’s objective is to plot horizontal lines, its price parameter requires an
“input int/float” argument, which means that “series float” values such as close or
dynamically-calculated values cannot be used.

• Its color parameter requires an “input int” argument, which precludes the use of dynamic
colors, i.e., colors calculated on each bar — or “series color” values.

• Three different line styles are supported through the linestyle parameter:
hline.style_solid, hline.style_dotted and hline.style_dashed.

Let’s see hline() in action in the “True Strength Index” indicator:

//@version=5
indicator("TSI")
myTSI = 100 * ta.tsi(close, 25, 13)

https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#plot
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#pageplots-levels
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Levels.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Levels.html#fills-between-levels
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Levels.html#hline-levels

hline(50, "+50", color.lime)
hline(25, "+25", color.green)
hline(0, "Zero", color.gray, linestyle = hline.style_dotted)
hline(-25, "-25", color.maroon)
hline(-50, "-50", color.red)

plot(myTSI)

Note that:

• We display 5 levels, each of a different color.
• We use a different line style for the zero centerline.

• We choose colors that will work well on both light and dark themes.
• The usual range for the indicator’s values is +100 to -100. Since the ta.tsi() built-in returns

values in the +1 to -1 range, we make the adjustment in our code.

Fills between levels
The space between two levels plotted with hline() can be colored using fill(). Keep in mind that
both plots must have been plotted with hline().

Let’s put some background colors in our TSI indicator:

//@version=5
indicator("TSI")
myTSI = 100 * ta.tsi(close, 25, 13)

plus50Hline = hline(50, "+50", color.lime)
plus25Hline = hline(25, "+25", color.green)
zeroHline = hline(0, "Zero", color.gray, linestyle = hline.style_dotted)
minus25Hline = hline(-25, "-25", color.maroon)
minus50Hline = hline(-50, "-50", color.red)

// ————— Function returns a color in a light shade for use as a background.
fillColor(color col) =>
 color.new(col, 90)

fill(plus50Hline, plus25Hline, fillColor(color.lime))
fill(plus25Hline, zeroHline, fillColor(color.teal))
fill(zeroHline, minus25Hline, fillColor(color.maroon))
fill(minus25Hline, minus50Hline, fillColor(color.red))

plot(myTSI)

https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Levels.html#id2
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dtsi

Note that:

• We have now used the return value of our hline() function calls, which is of the hline special
type. We use the plus50Hline, plus25Hline, zeroHline, minus25Hline and
minus50Hline variables to store those “hline” IDs because we will need them in our fill()
calls later.

• To generate lighter color shades for the background colors, we declare a fillColor()
function that accepts a color and returns its 90 transparency. We use calls to that function for
the color arguments in our fill() calls.

• We make our fill() calls for each of the four different fills we want, between four different
pairs of levels.

• We use color.teal in our second fill because it produces a green that fits the color
scheme better than the color.green used for the 25 level.

https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-plotandhline
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/

Note that:

• We use the group parameter to distinguish between the two sections of inputs. We use a
constant to hold the name of the groups. This way, if we decide to change the name of the
group, we only need to change it in one place.

• The first sections inputs widgets do not align vertically. We are using inline, which places
the input widgets immediately to the right of the label. Because the labels for the
ma1SourceInput and long1SourceInput inputs are of different lengths the labels
are in different y positions.

• To make up for the misalignment, we pad the title argument in the ma2SourceInput
line with three Unicode EN spaces (U+2002). Unicode spaces are necessary because
ordinary spaces would be stripped from the label. You can achieve precise alignment by
combining different quantities and types of Unicode spaces. See here for a list of Unicode
spaces of different widths.

Libraries
• Introduction
• Creating a library

• Library functions
• Argument form control
• User-defined types and objects

• Publishing a library
• House Rules

• Using a library

Introduction
Pine Script® libraries are publications containing functions that can be reused in indicators,
strategies, or in other libraries. They are useful to define frequently-used functions so their source
code does not have to be included in every script where they are needed.

A library must be published (privately or publicly) before it can be used in another script. All
libraries are published open-source. Public scripts can only use public libraries and they must be
open-source. Private scripts or personal scripts saved in the Pine Script® Editor can use public or
private libraries. A library can use other libraries, or even previous versions of itself.

Library programmers should be familiar with Pine Script®’s typing nomenclature, scopes and user-
defined functions. If you need to brush up on forms and types, see the User Manual’s page on the
Type system. For more information on user-defined functions and scopes, see the User-defined
functions page.

You can browse the library scripts published publicly by members in TradingView’s Community
Scripts.

https://www.tradingview.com/scripts/?script_type=libraries
https://www.tradingview.com/scripts/?script_type=libraries
https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#pageuserdefinedfunctions
https://www.tradingview.com/pine-script-docs/en/v5/language/User-defined_functions.html#pageuserdefinedfunctions
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#using-a-library
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#house-rules
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#publishing-a-library
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#user-defined-types-and-objects
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#argument-form-control
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#library-functions
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#creating-a-library
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#introduction
https://jkorpela.fi/chars/spaces.html
https://jkorpela.fi/chars/spaces.html
https://www.tradingview.com/

Creating a library
A library is a special kind of script that begins with the library() declaration statement, rather than
indicator() or strategy(). A library contains exportable function definitions, which constitute the
only visible part of the library when it is used by another script. Libraries can also use other Pine
Script® code in their global scope, like a normal indicator. This code will typically serve to
demonstrate how to use the library’s functions.

A library script has the following structure, where one or more exportable functions must be
defined:

//@version=5

// @description <library_description>
library(title, overlay)

<script_code>

// @function <function_description>
// @param <parameter> <parameter_description>
// @returns <return_value_description>
export <function_name>([simple/series] <parameter_type> <parameter_name> [=
<default_value>] [, ...]) =>
 <function_code>

<script_code>

Note that:

• The // @description, // @function, // @param and // @returns compiler
annotations are optional but we highly recommend you use them. They serve a double
purpose: document the library’s code and populate the default library description which
authors can use when publishing the library.

• The export keyword is mandatory.
• <parameter_type> is mandatory, contrary to user-defined function parameter definitions in

indicators or strategies, which are typeless.
• <script_code> can be any code you would normally use in an indicator, including inputs or

plots.

This is an example library:

//@version=5

// @description Provides functions calculating the all-time high/low of values.
library("AllTimeHighLow", true)

// @function Calculates the all-time high of a series.
// @param val Series to use (`high` is used if no argument is supplied).
// @returns The all-time high for the series.
export hi(float val = high) =>
 var float ath = val
 ath := math.max(ath, val)

// @function Calculates the all-time low of a series.
// @param val Series to use (`low` is used if no argument is supplied).
// @returns The all-time low for the series.
export lo(float val = low) =>
 var float atl = val
 atl := math.min(atl, val)

plot(hi())

https://www.tradingview.com/pine-script-reference/v5/#op_export
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#pagescriptstructure-compilerannotations
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#pagescriptstructure-compilerannotations
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#id2

plot(lo())

Library functions

Function definitions in libraries are slightly different than those of user-defined functions in
indicators and strategies. There are constraints as to what can be included in the body of library
functions.

In library function signatures (their first line):

• The export keyword is mandatory.
• The type of argument expected for each parameter must be explicitly mentioned.
• A simple or series form modifier can restrict the allowable forms of arguments (the next

section explains their use).

These are the constraints imposed on library functions:

• They cannot use variables from the library’s global scope unless they are of “const” form.
This means you cannot use global variables initialized from script inputs, for example, or
globally declared arrays.

• request.*() calls are not allowed.
• input.*() calls are not allowed.
• plot*(), fill() and bgcolor() calls are not allowed.

Library functions always return a result that is either of “simple” or “series” form. You cannot use
them to calculate values where “const” or “input” forms are required, as is the case with some built-
in functions. For example, a library function cannot be used to calculate an argument for the
show_last parameter in a plot() call, because an “input int” argument is required for
show_last.

Argument form control

The form of arguments supplied in calls to library functions is autodetected based on how the
argument is used inside the function. If the argument can be used in “series” form, it is. If it cannot,
an attempt is made with the “simple” type form. This explains why this code:

export myEma(int x) =>
 ta.ema(close, x)

will work when called using myCustomLibrary.myEma(20), even though ta.ema()’s length

parameter requires a “simple int” argument. When the Pine Script® compiler detects that a “series”
length cannot be used with ta.ema(), it tries the “simple” form, which in this case is allowed.

While library functions cannot return results of “const” or “input” forms, they can be written to
produce a result of “simple” form. This makes them useful in more contexts than functions
returning a result of “series” form, because some built-in functions do not allow “series” arguments.
For example, request.security() requires a “simple string” for its symbol parameter. If we wrote a
library function to assemble the argument to symbol in the following way, the function’s result
would not work because it is of “series” form:

export makeTickerid(string prefix, string ticker) =>
 prefix + ":" + ticker

However, by restricting the form of its parameters to “simple”, we could force the function to yield
a “simple” result. We can achieve this by prefixing the parameters’ type with the simple keyword:

export makeTickerid(simple string prefix, simple string ticker) =>

https://www.tradingview.com/pine-script-reference/v5/#op_simple
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dema
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dema
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#id4
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#op_series
https://www.tradingview.com/pine-script-reference/v5/#op_simple
https://www.tradingview.com/pine-script-reference/v5/#op_export
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#id3

 prefix + ":" + ticker

Note that for the function to return a “simple” result, no “series” values can be used in its
calculation; otherwise the result will be of “series” form.

One can also use the series keyword to prefix the type of a library function parameter. However,
because arguments are by default cast to the “series” form, using the series modifier is redundant; it
exists more for completeness.

User-defined types and objects

You can export user-defined types (UDTs) from libraries, and library functions can return objects.

To export a UDT, prefix its definition with the export keyword just as you would export a function:

//@version=5
library("Point")

export type point
 int x
 float y
 bool isHi
 bool wasBreached = false

A script importing that library and creating an object from its point UDT would look somewhat
like this:

//@version=5
indicator("")
import userName/Point/1 as pt
newPoint = pt.point.new()

Note that:

• This code won’t compile because no “Point” library is published, and the script doesn’t
display anything.

• userName would need to be replaced by the TradingView user name of the library’s
publisher.

• We use the built-in new() method to create an object from the point UDT.
• We prefix the reference to the library’s point UDT with the pt alias defined in the import

statement, just like we would when using a function from an imported library.

UDTs used in a library must be exported if any of its exported functions use a parameter or returns
a result of that user-defined type.

When a library only uses a UDT internally, it does not have to be exported. The following library
uses the point UDT internally, but only its drawPivots() function is exported, which does not
use a parameter nor return a result of point type:

//@version=5
library("PivotLabels", true)

// We use this `point` UDT in the library, but it does NOT require exporting
because:
// 1. The exported function's parameters do not use the UDT.
// 2. The exported function does not return a UDT result.
type point
 int x
 float y
 bool isHi

https://www.tradingview.com/pine-script-reference/v5/#op_import
https://www.tradingview.com/pine-script-reference/v5/#op_export
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html#pageobjects
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-userdefinedtypes
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#id5
https://www.tradingview.com/pine-script-reference/v5/#op_simple
https://www.tradingview.com/pine-script-reference/v5/#op_simple

 bool wasBreached = false

fillPivotsArray(qtyLabels, leftLegs, rightLegs) =>
 // Create an array of the specified qty of pivots to maintain.
 var pivotsArray = array.new<point>(math.max(qtyLabels, 0))

 // Detect pivots.
 float pivotHi = ta.pivothigh(leftLegs, rightLegs)
 float pivotLo = ta.pivotlow(leftLegs, rightLegs)

 // Create a new `point` object when a pivot is found.
 point foundPoint = switch
 pivotHi => point.new(time[rightLegs], pivotHi, true)
 pivotLo => point.new(time[rightLegs], pivotLo, false)
 => na

 // Add new pivot info to the array and remove the oldest pivot.
 if not na(foundPoint)
 array.push(pivotsArray, foundPoint)
 array.shift(pivotsArray)

 array<point> result = pivotsArray

detectBreaches(pivotsArray) =>
 // Detect breaches.
 for [i, eachPoint] in pivotsArray
 if not na(eachPoint)
 if not eachPoint.wasBreached
 bool hiWasBreached = eachPoint.isHi and high[1] <=
eachPoint.y and high > eachPoint.y
 bool loWasBreached = not eachPoint.isHi and low[1] >=
eachPoint.y and low < eachPoint.y
 if hiWasBreached or loWasBreached
 // This pivot was breached; change its `wasBreached` field.
 point p = array.get(pivotsArray, i)
 p.wasBreached := true
 array.set(pivotsArray, i, p)

drawLabels(pivotsArray) =>
 for eachPoint in pivotsArray
 if not na(eachPoint)
 label.new(
 eachPoint.x,
 eachPoint.y,
 str.tostring(eachPoint.y, format.mintick),
 xloc.bar_time,
 color = eachPoint.wasBreached ? color.gray : eachPoint.isHi ?
color.teal : color.red,
 style = eachPoint.isHi ? label.style_label_down:
label.style_label_up,
 textcolor = eachPoint.wasBreached ? color.silver : color.white)

// @function Displays a label for each of the last `qtyLabels` pivots.
// Colors high pivots in green, low pivots in red, and breached
pivots in gray.
// @param qtyLabels (simple int) Quantity of last labels to display.
// @param leftLegs (simple int) Left pivot legs.
// @param rightLegs (simple int) Right pivot legs.
// @returns Nothing.
export drawPivots(int qtyLabels, int leftLegs, int rightLegs) =>

 // Gather pivots as they occur.
 pointsArray = fillPivotsArray(qtyLabels, leftLegs, rightLegs)

 // Mark breached pivots.
 detectBreaches(pointsArray)

 // Draw labels once.
 if barstate.islastconfirmedhistory
 drawLabels(pointsArray)

// Example use of the function.
drawPivots(20, 10, 5)

If the TradingView user published the above library, it could be used like this:

//@version=5
indicator("")
import TradingView/PivotLabels/1 as dpl
dpl.drawPivots(20, 10, 10)

Publishing a library
Before you or other Pine Script® programmers can reuse any library, it must be published. If you
want to share your library with all TradingViewers, publish it publicly. To use it privately, use a
private publication. As with indicators or strategies, the active chart when you publish a library will
appear in both its widget (the small placeholder denoting libraries in the TradingView scripts
stream) and script page (the page users see when they click on the widget).

Private libraries can be used in public Protected or Invite-only scripts.

After adding our example library to the chart and setting up a clean chart showing our library plots
the way we want them, we use the Pine Editor’s “Publish Script” button. The “Publish Library”
window comes up:

Note that:

• We leave the library’s title as is (the title argument in our library() declaration statement
is used as the default). While you can change the publication’s title, it is preferable to keep
its default value because the title argument is used to reference imported libraries in the
import statement. It makes life easier for library users when your publication’s title matches
the actual name of the library.

• A default description is built from the compiler annotations we used in our library. We will
publish the library wihout retouching it.

• We chose to publish our library publicly, so it will be visible to all TradingViewers.
• We do not have the possibility of selecting a visibility type other than “Open” because

libraries are always open-source.
• The list of categories for libraries is different than for indicators and strategies. We have

selected the “Statistics and Metrics” category.
• We have added some custom tags: “all-time”, “high” and “low”.

The intended users of public libraries being other Pine programmers; the better you explain and
document your library’s functions, the more chances others will use them. Providing examples
demonstrating how to use your library’s functions in your publication’s code will also help.

https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#pagescriptstructure-compilerannotations
https://www.tradingview.com/pine-script-reference/v5/#op_import
https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#id6

House Rules

Pine libraries are considered “public domain” code in our House Rules on Script Publishing, which
entails that permission is not required from their author if you call their functions or reuse their code
in your open-source scripts. However, if you intend to reuse code from a Pine Script® library’s
functions in a public protected or invite-only publication, explicit permission for reuse in that form
is required from its author.

Whether using a library’s functions or reusing its code, you must credit the author in your
publication’s description. It is also good form to credit in open-source comments.

Using a library
Using a library from another script (which can be an indicator, a strategy or another library), is done
through the import statement:

import <username>/<libraryName>/<libraryVersion> [as <alias>]

where:

• The <username>/<libraryName>/<libraryVersion> path will uniquely identify the library.
• The <libraryVersion> must be specified explicitly. To ensure the reliability of scripts using

libraries, there is no way to automatically use the latest version of a library. Every time a
library update is published by its author, the library’s version number increases. If you
intend to use the latest version of the library, the <libraryVersion> value will require
updating in the import statement.

• The as <alias> part is optional. When used, it defines the namespace that will refer to
the library’s functions. For example, if you import a library using the allTime alias as we
do in the example below, you will refer to that library’s functions as
allTime.<function_mame>(). When no alias is defined, the library’s name becomes
its namespace.

To use the library we published in the previous section, our next script will require an import
statement:

import PineCoders/AllTimeHighLow/1 as allTime

As you type the user name of the library’s author, you can use the Editor’s ctrl + space / cmd +
space “Auto-complete” command to display a popup providing selections that match the available
libraries:

This is an indicator that reuses our library:

//@version=5
indicator("Using AllTimeHighLow library", "", true)
import PineCoders/AllTimeHighLow/1 as allTime

plot(allTime.hi())
plot(allTime.lo())
plot(allTime.hi(close))

Note that:

• We have chosen to use the “allTime” alias for the library’s instance in our script. When
typing that alias in the Editor, a popup will appear to help you select the particular function

https://www.tradingview.com/pine-script-reference/v5/#op_import
https://www.tradingview.com/pine-script-reference/v5/#op_import
https://www.tradingview.com/pine-script-reference/v5/#op_import
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#id8
https://www.tradingview.com/support/solutions/43000590599
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#id7

you want to use from the library.
• We use the library’s hi() and lo() functions without an argument, so the default high and

low built-in variables will be used for their series, respectively.
• We use a second call to allTime.hi(), but this time using close as its argument, to plot

the highest close in the chart’s history.

Lines and boxes
• Introduction
• Lines

• Creating lines
• Modifying lines
• Line styles
• Getting line properties
• Cloning lines
• Deleting lines

• Boxes
• Creating boxes
• Modifying boxes
• Box styles
• Getting box properties
• Cloning boxes
• Deleting boxes

• Realtime behavior
• Limitations

• Total number of objects
• Future references with `xloc.bar_index`
• Additional securities
• Historical buffer and `max_bars_back`

• Examples
• Pivot Points Standard
• Pivot Points High/Low
• Linear Regression
• Zig Zag

Introduction
Lines and boxes are only available in v4 and higher versions of Pine Script®. They are useful to
draw support and resistance levels, trend lines, price ranges. Multiple small line segments are also
useful to draw complex geometric forms.

The flexibility lines and boxes allow in their positioning mechanism makes them particularly well-
suited to drawing objects at points in the past that are detected a variable number of bars after the
fact.

Lines and boxes are objects, like labels and tables. Like them, they are referred to using an ID,
which acts like a pointer. Line IDs are of “line” type, and box IDs are of “box” type. As with other

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#pagetables
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#pagetextandshapes-labels
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id4
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#zig-zag
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#linear-regression
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#pivot-points-high-low
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#pivot-points-standard
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#examples
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#historical-buffer-and-max-bars-back
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#additional-securities
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#future-references-with-xloc-bar-index
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#total-number-of-objects
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#limitations
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#realtime-behavior
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#deleting-boxes
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#cloning-boxes
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#getting-box-properties
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#box-styles
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#modifying-boxes
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#creating-boxes
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#boxes
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#deleting-lines
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#cloning-lines
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#getting-line-properties
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#line-styles
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#modifying-lines
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#creating-lines
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#lines
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#introduction
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high

objects, lines and box IDs are “time series” and all the functions used to manage them accept
“series” arguments, which makes them very flexible.

Note

On TradingView charts, a complete set of Drawing Tools allows users to create and modify
drawings using mouse actions. While they may sometimes look similar to drawing objects created
with Pine Script® code, they are unrelated entities. Lines and boxes created using Pine code cannot
be modified with mouse actions, and hand-drawn drawings from the chart user interface are not
visible from Pine scripts.

Lines can be horizontal or at an angle, while boxes are always rectangular. Both share many
common characteristics:

• They can start and end from any point on the chart, including the future.
• The functions used to manage them can be placed in conditional or loop structures, making

it easier to control their behavior.
• They can be extended to infinity, left or right of their anchoring coordinates.
• Their attributes can be changed during the script’s execution.
• The x coordinates used to position them can be expressed as a bar index or a time value.
• In the x coordinate, they start and stop on the middle of the bar.
• Different pre-defined styles can be used for line patterns and end points, and box borders.
• A maximum of 500 of each can be drawn on the chart at any given time. The default is ~50,

but you can use the max_lines_count and max_boxes_count parameters in your
indicator() or strategy() declaration statement to specify up to 500. Lines and boxes, like
labels, are managed using a garbage collection mechanism which deletes the oldest ones on
the chart, such that only the most recently displayed are visible.

This script draws both lines and boxes:

//@version=5
indicator("Opening bar's range", "", true)
string tfInput = input.timeframe("D", "Timeframe")
// Initialize variables on bar zero only, so they preserve their values across
bars.
var hi = float(na)
var lo = float(na)
var line hiLine = na
var line loLine = na
var box hiLoBox = na
// Detect changes in timeframe.
bool newTF = ta.change(time(tfInput))
if newTF
 // New bar in higher timeframe; reset values and create new lines and box.
 hi := high
 lo := low
 hiLine := line.new(bar_index - 1, hi, bar_index, hi, color = color.green,
width = 2)
 loLine := line.new(bar_index - 1, lo, bar_index, lo, color = color.red,
width = 2)
 hiLoBox := box.new(bar_index - 1, hi, bar_index, lo, border_color = na,
bgcolor = color.silver)
 int(na)
else
 // On other bars, extend the right coordinate of lines and box.
 line.set_x2(hiLine, bar_index)
 line.set_x2(loLine, bar_index)

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator

 box.set_right(hiLoBox, bar_index)
 // Change the color of the boxes' background depending on whether high/low
is higher/lower than the box.
 boxColor = high > hi ? color.green : low < lo ? color.red : color.silver
 box.set_bgcolor(hiLoBox, color.new(boxColor, 50))
 int(na)

Note that:

• We are detecting the first bar of a user-defined higher timeframe and saving its high and low
values.

• We draw the hi and low levels using one line for each.
• We fill the space in between with a box.
• Every time we create two new lines and a box, we save their ID in variables hiLine,
loLine and hiLoBox, which we then use in the calls to the setter functions to prolong
these objects as new bars come in during the higher timeframe.

• We change the color of the boxes’ background (boxColor) using the position of the bar’s
high and low with relative to the opening bar’s same values. This entails that our script is
repainting, as the boxes’ color on past bars will change, depending on the current bar’s
values.

• We artificially make the return type of both branches of our if structure int(na) so the
compiler doesn’t complain about them not returning the same type. This occurs because
box.new() in the first branch returns a result of type “box”, while box.set_bgcolor() in the
second branch returns type “void”. See the Matching local block type requiremement section
for more information.

Lines
Lines are managed using built-in functions in the line namespace. They include:

• line.new() to create them.
• line.set_*() functions to modify the properties of an line.
• line.get_*() functions to read the properties of an existing line.
• line.copy() to clone them.
• line.delete() to delete them.
• The line.all array which always contains the IDs of all the visible lines on the chart. The

array’s size will depend on the maximum line count for your script and how many of those
you have drawn. aray.size(line.all) will return the array’s size.

Creating lines

The line.new() function creates a new line. It has the following signature:

line.new(x1, y1, x2, y2, xloc, extend, color, style, width) → series line

Lines are positioned on the chart according to x (bars) and y (price) coordinates. Five parameters
affect this behavior: x1, y1, x2, y2 and xloc:

x1 and x2
They are the x coordinates of the line’s start and end points. They are either a bar index or a
time value, as determined by the argument used for xloc. When a bar index is used, the
value can be offset in the past (maximum of 5000 bars) or in the future (maximum of 500
bars). Past or future offsets can also be calculated when using time values. The x1 and x2
values of an existing line can be modified using line.set_x1(), line.set_x2(), line.set_xy1() or

https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_xy1
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_x2
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_x1
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dnew
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id6
https://www.tradingview.com/pine-script-reference/v5/#var_line%7Bdot%7Dall
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Ddelete
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dcopy
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dnew
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#pageconditionalstructures-matchinglocalblocktyperequirement
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high

line.set_xy2().
xloc

Is either xloc.bar_index (the default) or xloc.bar_time. It determines which type of argument
must be used with x1 and x2. With xloc.bar_index, x1 and x2 must be absolute bar indices.
With xloc.bar_time, x1 and x2 must be a UNIX timestamp in milliseconds corresponding to
the time value of a bar’s open. The xloc value of an existing line can be modified using
line.set_xloc().

y1 and y2
They are the y coordinates of the line’s start and end points. While they are called price levels,
they must be of values that make sense in the script’s visual space. For an RSI indicator, they
would typically be between 0 and 100, for example. When an indicator is running as an
overlay, then the price scale will usually be that of the chart’s symbol. The y1 and y2 values
of an existing line can be modified using line.set_y1(), line.set_y2(), line.set_xy1() or
line.set_xy2().

The remaining four parameters in line.new() control the visual appearance of lines:

extend
Determines if the line is extended past its coordinates. It can be extend.none, extend.left,
extend.right or extend.both.

color
Is the line’s color.

style
Is the style of line. See this page’s Line styles section.

width
Determines the width of the line in pixels.

This is how you can create lines in their simplest form. We connect the preceding bar’s high to the
current bar’s low:

//@version=5
indicator("", "", true)
line.new(bar_index - 1, high[1], bar_index, low, width = 3)

Note that:

• We use a different x1 and x2 value: bar_index - 1 and bar_index. This is
necessary, otherwise no line would be created.

• We make the width of our line 3 pixels using width = 3.
• No logic controls our line.new() call, so lines are created on every bar.
• Only approximately the last 50 lines are shown because that is the default value for the
max_lines_count parameter in indicator(), which we haven’t specified.

• Lines persist on bars until your script deletes them using line.delete(), or garbage collection
removes them.

In this next example, we use lines to create probable travel paths for price. We draw a user-selected
quantity of lines from the previous bar’s center point between its close and open values. The lines
project one bar after the current bar, after having been distributed along the close and open range of
the current bar:

https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Ddelete
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#pagelinesandboxes-linestyles
https://www.tradingview.com/pine-script-reference/v5/#var_extend%7Bdot%7Dboth
https://www.tradingview.com/pine-script-reference/v5/#var_extend%7Bdot%7Dright
https://www.tradingview.com/pine-script-reference/v5/#var_extend%7Bdot%7Dleft
https://www.tradingview.com/pine-script-reference/v5/#var_extend%7Bdot%7Dnone
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_xy2
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_xy1
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_y2
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_y1
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_xloc
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_index
https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_xy2

//@version=5
indicator("Price path projection", "PPP", true, max_lines_count = 100)
qtyOfLinesInput = input.int(10, minval = 1)

y2Increment = (close - open) / qtyOfLinesInput
// Starting point of the fan in y.
lineY1 = math.avg(close[1], open[1])
// Loop creating the fan of lines on each bar.
for i = 0 to qtyOfLinesInput
 // End point in y if line stopped at current bar.
 lineY2 = open + (y2Increment * i)
 // Extrapolate necessary y position to the next bar because we extend lines
one bar in the future.
 lineY2 := lineY2 + (lineY2 - lineY1)
 lineColor = lineY2 > lineY1 ? color.lime : color.fuchsia
 line.new(bar_index - 1, lineY1, bar_index + 1, lineY2, color = lineColor)

Note that:

• We are creating a set of lines from within a for structure.
• We use the default xloc = xloc.bar_index, so our x1 and x2 values are bar indices.
• We want to start lines on the previous bar, so we use bar_index - 1 for x1 and
bar_index + 1 for x2.

• We use a “series color” value (its value can change in any of the loop’s iterations) for the
line’s color. When the line is going up we make it lime; if not we make it fuchsia.

• The script will repaint in realtime because it is using the close and open values of the
realtime bar to calculate line projections. Once the realtime bar closes, the lines drawn on
elapsed realtime bars will no longer update.

• We use max_lines_count = 100 in our indicator() call to preserve the last 100 lines.

Modifying lines

The setter functions allowing you to change a line’s properties are:

• line.set_x1()
• line.set_y1()
• line.set_xy1()
• line.set_x2()
• line.set_y2()
• line.set_xy2()
• line.set_xloc()
• line.set_extend()
• line.set_color()
• line.set_style()
• line.set_width()

They all have a similar signature. The one for line.set_color() is:

line.set_color(id, color) → void

where:

• id is the ID of the line whose property is to be modified.
• The next parameter is the property of the line to modify. It depends on the setter function

https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_color
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_width
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_style
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_color
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_extend
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_xloc
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_xy2
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_y2
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_x2
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_xy1
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_y1
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_x1
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id7
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#op_for

used. line.set_xy1() and line.set_xy2() change two properties, so they have two such
parameters.

In the next example we display a line showing the highest high value in the last lookbackInput
bars. We will be using setter functions to modify an existing line:

//@version=5
MAX_BARS_BACK = 500
indicator("Last high", "", true, max_bars_back = MAX_BARS_BACK)

repaintInput = input.bool(false, "Position bars in the past")
lookbackInput = input.int(50, minval = 1, maxval = MAX_BARS_BACK)

// Keep track of highest `high` and detect when it changes.
hi = ta.highest(lookbackInput)
newHi = ta.change(hi)
// Find the offset to the highest `high` in last 50 bars. Change it's sign so it
is positive.
highestBarOffset = - ta.highestbars(lookbackInput)
// Create label on bar zero only.
var lbl = label.new(na, na, "", color = color(na), style =
label.style_label_left)
var lin = line.new(na, na, na, na, xloc = xloc.bar_time, style =
line.style_arrow_right)
// When a new high is found, move the label there and update its text and
tooltip.
if newHi
 // Build line.
 lineX1 = time[highestBarOffset + 1]
 // Get the `high` value at that offset. Note that `highest(50)` would be
equivalent,
 // but it would require evaluation on every bar, prior to entry into this
`if` structure.
 lineY = high[highestBarOffset]
 // Determine line's starting point with user setting to plot in past or not.
 line.set_xy1(lin, repaintInput ? lineX1 : time[1], lineY)
 line.set_xy2(lin, repaintInput ? lineX1 : time, lineY)

 // Reposition label and display new high's value.
 label.set_xy(lbl, bar_index, lineY)
 label.set_text(lbl, str.tostring(lineY, format.mintick))
else
 // Update line's right end point and label to current bar's.
 line.set_x2(lin, time)
 label.set_x(lbl, bar_index)

// Show a blue dot when a new high is found.
plotchar(newHi, "newHighFound", "•", location.top, size = size.tiny)

Note that:

• We plot the line starting on the bar preceding the point where the new high is found. We
draw the line from the preceding bar so that we see a one bar line when a new high is found.

• We only start the line in the past, from the actual highest point, when the user explicitly
chooses to do so through the script’s inputs. This gives the user control over the repainting
behavior of the script. It also avoids misleading traders into thinking that our script is
prescient and can know in advance if a high point will still be the high point in the lookback
period n bars later.

https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_xy2
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_xy1

• We manage the historical buffer to avoid runtime errors when referring to bars too far away
in the past. We do two things for this: we use the max_bars_back parameter in our
indicator() call, and we cap the input for lookbackInput using maxval in our
input.int() call. Rather than use the 500 literal in two places, we create a MAX_BARS_BACK
constant for it.

• We create our line and label on the first bar only, using var. From that point on, we only need
to update their properties, so we are moving the same line and label along, resetting their
position and the label’s text when a new high is found, and then only updating their x
coordinates as new bars come in. We use the line.set_xy1() and line.set_xy1() functions
when we find a new high, and line.set_x2() on other bars, to extend the line.

• We use time values for x1 and x2 because our line.new() call specifies xloc =
xloc.bar_time.

• We use style = line.style_arrow_right in our line.new() call to display a right
arrow line style.

• Even though our label’s background is not visible, we use style =
label.style_label_left in our label.new() call so that the price value is positioned
to the right of the chart’s last bar.

• To better visualize on which bars a new high is found, we plot a blue dot using plotchar().
Note that this does not necessarily entail the bar where it appears is the new highest value.
While this may happen, a new highest value can also be calculated because a long-standing
high has dropped off from the lookback length and been replaced by another high that may
not be on the bar where the blue dot appears.

• Our chart cursor points to the bar with the highest value in the last 50 bars.
• When the user does not choose to plot in the past, our script does not repaint.

Line styles

Various styles can be applied to lines with either the line.new() or line.set_style() functions:

Argument Line Argument Line

line.style_
solid

 line.style_
arrow_left

line.style_
dotted

 line.style_
arrow_right

line.style_
dashed

 line.style_
arrow_both

Getting line properties

The following getter functions are available for lines:

• line.get_price()
• line.get_x1()

https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dget_x1
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dget_price
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id9
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_style
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dnew
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id8
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_x2
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_xy1
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dset_xy1
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dint
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator

• line.get_y1()
• line.get_x2()
• line.get_y2()

The signature for line.get_price() is:

line.get_price(id, x) → series float

where:

• id is the line whose x1 value is to be retrieved
• x is the bar index of the point on the line whose y coordinate is to be returned.

The last four functions all have a similar signature. The one for line.get_x1() is:

line.get_x1(id) → series int

where id is the ID of the line whose x1 value is to be retrieved.

Cloning lines

The line.copy() function is used to clone lines. Its syntax is:

line.copy(id) → void

Deleting lines

The line.delete() function is used to delete lines. Its syntax is:

line.delete(id) → void

To keep only a user-defined quantity of lines on the chart, one could use code like this, where we
are dawing a level every time RSI rises/falls for a user-defined quantity of consecutive bars:

https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Ddelete
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id11
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dcopy
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id10
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dget_x1
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dget_price
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dget_y2
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dget_x2
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dget_y1

//@version=5
int MAX_LINES_COUNT = 500
indicator("RSI levels", max_lines_count = MAX_LINES_COUNT)

int linesToKeepInput = input.int(10, minval = 1, maxval = MAX_LINES_COUNT)
int sensitivityInput = input.int(5, minval = 1)

float myRSI = ta.rsi(close, 20)
bool myRSIRises = ta.rising(myRSI, sensitivityInput)
bool myRSIFalls = ta.falling(myRSI, sensitivityInput)
if myRSIRises or myRSIFalls
 color lineColor = myRSIRises ? color.new(color.green, 70) :
color.new(color.red, 70)
 line.new(bar_index, myRSI, bar_index + 1, myRSI, color = lineColor, width =
2)
 // Once the new line is created, delete the oldest one if we have too many.
 if array.size(line.all) > linesToKeepInput
 line.delete(array.get(line.all, 0))
 int(na)
else
 // Extend all visible lines.
 int lineNo = 0
 while lineNo < array.size(line.all)
 line.set_x2(array.get(line.all, lineNo), bar_index)
 lineNo += 1
 int(na)

plot(myRSI)
hline(50)
// Plot markers to show where our triggering conditions are `true`.
plotchar(myRSIRises, "myRSIRises", "?", location.top, color.green, size =
size.tiny)
plotchar(myRSIFalls, "myRSIFalls", "?", location.bottom, color.red, size =
size.tiny)

Note that:

• We define a MAX_LINES_COUNT constant to hold the maximum quantity of lines a script
can accommodate. We use that value to set the max_lines_count parameter’s value in
our indicator() call, and also as the maxval value in our input.int() call, to cap the user
value.

• We use the myRSIRises and myRSIFalls variables to hold the states determining when
we create a new level. After that, we delete the oldest line in the line.all built-in array that is
automatically maintained by the Pine Script® runtime and contains the ID of all the visible
lines drawn by our script. We use the array.get() function to retrieve the array element at
index zero (the oldest visible line ID). We then use line.delete() to delete the line referenced
by that ID.

• Again, we need to artificially return int(na) in both local blocks of our if structure so the
compiler doesn’t not complain. See the Matching local block type requiremement section for
more information.

• This time, we mention the type of variables explicitly when we declare them, as in float
myRSI = ta.rsi(close, 20). The declarations are functionally redundant, but they
can help make your intention clear to readers of your code — you being the one who will
read it the most frequently.

Boxes
Boxes are managed using built-in functions in the box namespace. They include:

• box.new() to create them.

https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dnew
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id12
https://www.tradingview.com/pine-script-docs/en/v5/language/Conditional_structures.html#pageconditionalstructures-matchinglocalblocktyperequirement
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Ddelete
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dget
https://www.tradingview.com/pine-script-reference/v5/#var_label%7Bdot%7Dall
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dint
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator

• box.set_*() functions to modify the properties of a box.
• box.get_*() functions to read some of the properties of an existing box.
• box.copy() to clone them.
• box.delete() to delete them.
• The box.all array which always contains the IDs of all the visible boxes on the chart. The

array’s size will depend on the maximum box count for your script and how many of those
you have drawn. aray.size(box.all) will return the array’s size.

Creating boxes

The box.new() function creates a new line. It has the following signature:

box.new(left, top, right, bottom, border_color, border_width, border_style,
extend, xloc, bgcolor) → series box

Boxes are positioned on the chart according to x (bars) and y (price) coordinates. Five parameters
affect this behavior: left, top, right, bottom and xloc:

left and right
They are the x coordinates of the line’s start and end points. They are either a bar index or a
time value, as determined by the argument used for xloc. When a bar index is used, the
value can be offset in the past (maximum of 5000 bars) or in the future (maximum of 500
bars). Past or future offsets can also be calculated when using time values. The left and
right values of an existing line can be modified using box.set_left(), box.set_right(),
box.set_lefttop() or box.set_rightbottom().

xloc
Is either xloc.bar_index (the default) or xloc.bar_time. It determines which type of argument
must be used with left and right. With xloc.bar_index, left and right must be
absolute bar indices. With xloc.bar_time, left and right must be a UNIX timestamp in
milliseconds corresponding to a value between the bar’s time (opening time) and time_close
(closing time) values.

top and bottom
They are the y coordinates of the boxes’ top and bottom levels (boxes are always rectangular).
While they are called price levels, they must be of values that make sense in the script’s visual
space. For an RSI indicator, they would typically be between 0 and 100, for example. When
an indicator is running as an overlay, then the price scale will usually be that of the chart’s
symbol. The top and bottom values of an existing line can be modified using box.set_top(),
box.set_bottom(), box.set_lefttop() or box.set_rightbottom().

The remaining five parameters in box.new() control the visual appearance of boxes:

border_color
Is the border’s color. It defaults to color.blue.

border_width
Determines the width of the border in pixels.

border_style
Is the style of border. See this page’s Box styles section.

extend
Determines if the borders is extended past the box’s coordinates. It can be extend.none,
extend.left, extend.right or extend.both.

bgcolor
Is the background color of the box. It defaults to color.blue.

https://www.tradingview.com/pine-script-reference/v5/#var_color%7Bdot%7Dblue
https://www.tradingview.com/pine-script-reference/v5/#var_extend%7Bdot%7Dboth
https://www.tradingview.com/pine-script-reference/v5/#var_extend%7Bdot%7Dright
https://www.tradingview.com/pine-script-reference/v5/#var_extend%7Bdot%7Dleft
https://www.tradingview.com/pine-script-reference/v5/#var_extend%7Bdot%7Dnone
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#pagelinesandboxes-boxstyles
https://www.tradingview.com/pine-script-reference/v5/#var_color%7Bdot%7Dblue
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_rightbottom
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_lefttop
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_bottom
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_top
https://www.tradingview.com/pine-script-reference/v5/#var_time_close
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_index
https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_rightbottom
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_lefttop
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_right
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_left
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dnew
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id13
https://www.tradingview.com/pine-script-reference/v5/#var_box%7Bdot%7Dall
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Ddelete
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dcopy

Let’s create simple boxes:

//@version=5
indicator("", "", true)
box.new(bar_index, high, bar_index + 1, low, border_color = color.gray, bgcolor
= color.new(color.silver, 60))

Note that:

• The start and end points of boxes, like lines, are always the horizontal center of bars.
• We start these boxes at bar_index and end them on bar_index + 1 (the following bar

in the future) so that we get an actual box. If we used bar_index for both coordinates,
only a vertical line would be drawn in the center of the bar.

• No logic controls our box.new() call, so boxes are created on every bar.
• Only approximately the last 50 boxes are shown because that is the default value for the
max_boxes_count parameter in indicator(), which we haven’t specified.

• Boxes persist on bars until your script deletes them using box.delete(), or garbage collection
removes them.

Modifying boxes

The available setter functions for box drawings are:

• box.set_left()
• box.set_top()
• box.set_lefttop()
• box.set_right()
• box.set_bottom()
• box.set_rightbottom()
• box.set_border_color()
• box.set_border_width()
• box.set_border_style()
• box.set_extend()
• box.set_bgcolor()

Note that contrary to lines, there is no setter function to modify xloc for boxes.

This script uses setter functions to update boxes. It detects the largest up and down volume bars
during a user-defined timeframe and draws boxes with the high and low levels of those bars. If a
higher volume bar comes in, the timeframe’s box is redrawn using the new bar’s high and low
levels:

//@version=5
indicator("High volume bar boxes", "", true)

string tfInput = input.timeframe("D", "Resetting timeframe")
int transpInput = 100 - input.int(100, "Line Brightness", minval = 0, maxval
= 100, step = 5, inline = "1", tooltip = "100 is brightest")
int widthInput = input.int(2, "Width", minval = 0, maxval = 100, step = 5,
inline = "1")
color upColorInput = input.color(color.lime, "?", inline = "1")

https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_extend
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_border_style
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_border_width
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_border_color
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_rightbottom
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_bottom
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_right
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_lefttop
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_top
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_left
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id14
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Ddelete
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dnew

color dnColorInput = input.color(color.fuchsia, "?", inline = "1")

bool newTF = ta.change(time(tfInput))
bool barUp = close > open

// These keep track of highest up/dn volume found during the TF.
var float hiVolUp = na
var float hiVolDn = na
// These always hold the IDs of the current TFs boxes.
var box boxUp = na
var box boxDn = na

if newTF and not na(volume)
 // New TF begins; create new boxes, one of which will be invisible.
 if barUp
 hiVolUp := volume
 hiVolDn := na
 boxUp := box.new(bar_index, high, bar_index + 1, low, border_color =
color.new(upColorInput, transpInput), border_width = widthInput, bgcolor = na)
 boxDn := box.new(na, na, na, na, border_color = color.new(dnColorInput,
transpInput), border_width = widthInput, bgcolor = na)
 else
 hiVolDn := volume
 hiVolUp := na
 boxDn := box.new(bar_index, high, bar_index + 1, low, border_color =
color.new(dnColorInput, transpInput), border_width = widthInput, bgcolor = na)
 boxUp := box.new(na, na, na, na, border_color = color.new(upColorInput,
transpInput), border_width = widthInput, bgcolor = na)
 int(na)
else
 // On bars during the HTF, keep tracks of highest up/dn volume bar.
 if barUp
 hiVolUp := math.max(nz(hiVolUp), volume)
 else
 hiVolDn := math.max(nz(hiVolDn), volume)
 // If a new bar has higher volume, reset its box.
 if hiVolUp > nz(hiVolUp[1])
 box.set_lefttop(boxUp, bar_index, high)
 box.set_rightbottom(boxUp, bar_index + 1, low)
 else if hiVolDn > nz(hiVolDn[1])
 box.set_lefttop(boxDn, bar_index, high)
 box.set_rightbottom(boxDn, bar_index + 1, low)
 int(na)

// On all bars, extend right side of both boxes.
box.set_right(boxUp, bar_index + 1)
box.set_right(boxDn, bar_index + 1)
// Plot circle mark on TF changes.
plotchar(newTF, "newTF", "•", location.top, size = size.tiny)

Note that:

• We use the inline parameter in the inputs relating to the boxes’ visual appearance to place
them on the same line.

• We subtract the 0-100 brightness level given by the user from 100 to generate the correct
transparency for our box borders. We do this because it is more intuitive for users to specify
a brightness level where 100 represents maximum brightness. We provide a tooltip to
explain the scale.

• When a new higher timeframe bar comes in and the symbol’s feed contains volume data, we
reset our information. If the timeframe’s first bar is up, we create a new visible boxUp box
and an invisible boxDn box. We do the inverse if the first bar’s polarity is down. We take

care to reassign the IDs of the newly created boxes to boxUp and boxUp so we will be able
to update those boxes later in the script. This is possible because we have declared those
variables with var. See the section on the var declaration mode for more information.

• On all other chart bars belonging to the same higher timeframe bar, we monitor volume
values to keep track of the highest. If a new higher volume bar is encountered, we reset the
corresponding box’s coordinates on that new bar using box.set_lefttop() and
box.set_rightbottom().

• On all bars, we extend the right side of the timeframe’s two boxes using box.set_right().
• Approximately the last 50 boxes will be visible on the chart because we do not use
max_boxes_count in our indicator() call to change its default value.

This is our script’s “Settings/Inputs” tab:

Box styles

Various styles can be applied to boxes with either the box.new() or box.set_border_style()
functions:

Argument Box

line.style_
solid

line.style_
dotted

line.style_
dashed

Getting box properties

The following getter functions are available for boxes:

• box.get_bottom()
• box.get_left()
• box.get_right()
• box.get_top()

The signature for box.get_top() is:

box.get_top(id) → series float

where id is the ID of the box whose top value is to be retrieved.

https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dget_top
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dget_top
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dget_right
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dget_left
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dget_bottom
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id16
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_border_style
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dnew
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id15
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_right
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_rightbottom
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dset_lefttop
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#pagevariabledeclarations-var
https://www.tradingview.com/pine-script-reference/v5/#op_var

Cloning boxes

The box.copy() function is used to clone boxes. Its syntax is:

box.copy(id) → void

Deleting boxes

The box.delete() function is used to delete boxes. Its signature is:

box.delete(id) → void

Realtime behavior
Lines and boxes are subject to both commit and rollback actions, which affect the behavior of a
script when it executes in the realtime bar. See the page on Pine Script®’s Execution model.

This script demonstrates the effect of rollback when running in the realtime bar:

//@version=5
indicator("My Script", overlay = true)
line.new(bar_index, high, bar_index, low, width = 6)

While line.new() creates a new line on every iteration of the script when price changes in the
realtime bar, the most recent line created in the script’s previous iteration is also automatically
deleted because of the rollback before the next iteration. Only the last line created before the
realtime bar’s close will be committed, and will thus persist.

Limitations

Total number of objects

Lines and boxes consume server resources, which is why there is a limit to the total number of
drawings per indicator or strategy. When too many are created, old ones are automatically deleted
by the Pine Script® runtime, in a process referred to as garbage collection.

This code creates a line on every bar:

//@version=5
indicator("", "", true)
line.new(bar_index, high, bar_index, low, width = 6)

Scrolling the chart left, one will see there are no lines after approximately 50 bars:

You can change the drawing limit to a value in range from 1 to 500 using the max_lines_count
and max_boxes_count parameters in the indicator() or strategy() functions:

//@version=5
indicator("", "", true, max_lines_count = 100)
line.new(bar_index, high, bar_index, low, width = 6)

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id21
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id20
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dnew
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id19
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Ddelete
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id18
https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dcopy
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id17

Future references with `xloc.bar_index`

Objects positioned using xloc.bar_index cannot be drawn further than 500 bars into the
future.

Additional securities

Lines and boxes cannot be managed in functions sent with request.security() calls. While they can
use values fetched through request.security(), they must be drawn in the main symbol’s context.

This is also the reason why line and box drawing code will not work in scripts using the
timeframe parameter in indicator().

Historical buffer and `max_bars_back`

Use of barstate.isrealtime in combination with drawings may sometimes produce
unexpected results. This code’s intention, for example, is to ignore all historical bars and create a
label drawing on the realtime bar:

//@version=5
indicator("My Script", overlay = true)

if barstate.isrealtime
 label.new(bar_index[300], na, text = "Label", yloc = yloc.abovebar)

It will, however, fail at runtime. The reason for the error is that the script cannot determine the
buffer size for historical values of the time plot, even though the time built-in variable isn’t
mentioned in the code. This is due to the fact that the built-in variable bar_index uses the time
series in its inner workings. Accessing the value of the bar index 300 bars back requires that the
history buffer size of the time series be of size 300 or more.

In Pine Script®, there is a mechanism that automaticaly detects the required historical buffer size for
most cases. Autodetection works by letting a script access historical values any number of bars back
for a limited duration. In this script’s case, the if barstate.isrealtime condition prevents
any such accesses to occur, so the required historical buffer size cannot be inferred and the code
fails.

The solution to this conundrum is to use the max_bars_back function to explicitly set the historical
buffer size for the time series:

//@version=5
indicator("My Script", overlay = true)

max_bars_back(time, 300)

if barstate.isrealtime
 label.new(bar_index[300], na, text = "Label", yloc = yloc.abovebar)

Such occurrences are confusing, but rare. In time, the Pine Script® team hopes to eliminate them.

Examples

Pivot Points Standard

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id26
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id25
https://www.tradingview.com/pine-script-reference/v5/#fun_max_bars_back
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id24
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id23
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id22

//@version=5
indicator("Pivot Points Standard", overlay = true)
higherTFInput = input.timeframe("D")
prevCloseHTF = request.security(syminfo.tickerid, higherTFInput, close[1],
lookahead = barmerge.lookahead_on)
prevOpenHTF = request.security(syminfo.tickerid, higherTFInput, open[1],
lookahead = barmerge.lookahead_on)
prevHighHTF = request.security(syminfo.tickerid, higherTFInput, high[1],
lookahead = barmerge.lookahead_on)
prevLowHTF = request.security(syminfo.tickerid, higherTFInput, low[1], lookahead
= barmerge.lookahead_on)

pLevel = (prevHighHTF + prevLowHTF + prevCloseHTF) / 3
r1Level = pLevel * 2 - prevLowHTF
s1Level = pLevel * 2 - prevHighHTF

var line r1Line = na
var line pLine = na
var line s1Line = na

if pLevel[1] != pLevel
 line.set_x2(r1Line, bar_index)
 line.set_x2(pLine, bar_index)
 line.set_x2(s1Line, bar_index)
 line.set_extend(r1Line, extend.none)
 line.set_extend(pLine, extend.none)
 line.set_extend(s1Line, extend.none)
 r1Line := line.new(bar_index, r1Level, bar_index, r1Level, extend =
extend.right)
 pLine := line.new(bar_index, pLevel, bar_index, pLevel, width=3, extend =
extend.right)
 s1Line := line.new(bar_index, s1Level, bar_index, s1Level, extend =
extend.right)
 label.new(bar_index, r1Level, "R1", style = label.style_none)
 label.new(bar_index, pLevel, "P", style = label.style_none)
 label.new(bar_index, s1Level, "S1", style = label.style_none)

if not na(pLine) and line.get_x2(pLine) != bar_index
 line.set_x2(r1Line, bar_index)
 line.set_x2(pLine, bar_index)
 line.set_x2(s1Line, bar_index)

Pivot Points High/Low

//@version=5
indicator("Pivot Points High Low", "Pivots HL", true)

int lenHInput = input.int(10, "Length High", minval = 1)
int lenLInput = input.int(10, "Length Low", minval = 1)

float pivotHigh = ta.pivothigh(high, lenHInput, lenHInput)
float pivotLow = ta.pivotlow(low, lenLInput, lenLInput)

float pivot = 0.0
if not na(pivotHigh)
 pivot := nz(high[lenHInput])
 label.new(nz(bar_index[lenHInput]), pivot, str.tostring(pivot,
format.mintick), style = label.style_label_down, yloc = yloc.abovebar, color =
color.lime)

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id27

if not na(pivotLow)
 pivot := nz(low[lenLInput])
 label.new(nz(bar_index[lenLInput]), pivot, str.tostring(pivot,
format.mintick), style = label.style_label_up, yloc = yloc.belowbar, color =
color.red)

Linear Regression

//@version=5
indicator('Linear Regression', shorttitle='LinReg', overlay=true)

upperMult = input(title='Upper Deviation', defval=2)
lowerMult = input(title='Lower Deviation', defval=-2)

useUpperDev = input(title='Use Upper Deviation', defval=true)
useLowerDev = input(title='Use Lower Deviation', defval=true)
showPearson = input(title='Show Pearson\'s R', defval=true)
extendLines = input(title='Extend Lines', defval=false)

len = input(title='Count', defval=100)
src = input(title='Source', defval=close)

extend = extendLines ? extend.right : extend.none

calcSlope(src, len) =>
 if not barstate.islast or len <= 1
 [float(na), float(na), float(na)]
 else
 sumX = 0.0
 sumY = 0.0
 sumXSqr = 0.0
 sumXY = 0.0
 for i = 0 to len - 1 by 1
 val = src[i]
 per = i + 1.0
 sumX := sumX + per
 sumY := sumY + val
 sumXSqr := sumXSqr + per * per
 sumXY := sumXY + val * per
 sumXY
 slope = (len * sumXY - sumX * sumY) / (len * sumXSqr - sumX * sumX)
 average = sumY / len
 intercept = average - slope * sumX / len + slope
 [slope, average, intercept]

[s, a, intercpt] = calcSlope(src, len)

startPrice = intercpt + s * (len - 1)
endPrice = intercpt
var line baseLine = na

if na(baseLine) and not na(startPrice)
 baseLine := line.new(bar_index - len + 1, startPrice, bar_index, endPrice,
width = 1, extend=extend, color = color.red)
 baseLine
else
 line.set_xy1(baseLine, bar_index - len + 1, startPrice)
 line.set_xy2(baseLine, bar_index, endPrice)
 na

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id28

calcDev(src, len, slope, average, intercept) =>
 upDev = 0.0
 dnDev = 0.0
 stdDevAcc = 0.0
 dsxx = 0.0
 dsyy = 0.0
 dsxy = 0.0

 periods = len - 1

 daY = intercept + slope * periods / 2
 val = intercept

 for i = 0 to periods by 1
 price = high[i] - val
 if price > upDev
 upDev := price
 upDev

 price := val - low[i]
 if price > dnDev
 dnDev := price
 dnDev

 price := src[i]
 dxt = price - average
 dyt = val - daY

 price := price - val
 stdDevAcc := stdDevAcc + price * price
 dsxx := dsxx + dxt * dxt
 dsyy := dsyy + dyt * dyt
 dsxy := dsxy + dxt * dyt
 val := val + slope
 val

 stdDev = math.sqrt(stdDevAcc / (periods == 0 ? 1 : periods))
 pearsonR = dsxx == 0 or dsyy == 0 ? 0 : dsxy / math.sqrt(dsxx * dsyy)
 [stdDev, pearsonR, upDev, dnDev]

[stdDev, pearsonR, upDev, dnDev] = calcDev(src, len, s, a, intercpt)

upperStartPrice = startPrice + (useUpperDev ? upperMult * stdDev : upDev)
upperEndPrice = endPrice + (useUpperDev ? upperMult * stdDev : upDev)
var line upper = na

lowerStartPrice = startPrice + (useLowerDev ? lowerMult * stdDev : -dnDev)
lowerEndPrice = endPrice + (useLowerDev ? lowerMult * stdDev : -dnDev)
var line lower = na

if na(upper) and not na(upperStartPrice)
 upper := line.new(bar_index - len + 1, upperStartPrice, bar_index,
upperEndPrice, width=1, extend=extend, color=#0000ff)
 upper
else
 line.set_xy1(upper, bar_index - len + 1, upperStartPrice)
 line.set_xy2(upper, bar_index, upperEndPrice)
 na

if na(lower) and not na(lowerStartPrice)
 lower := line.new(bar_index - len + 1, lowerStartPrice, bar_index,
lowerEndPrice, width=1, extend=extend, color=#0000ff)
 lower

else
 line.set_xy1(lower, bar_index - len + 1, lowerStartPrice)
 line.set_xy2(lower, bar_index, lowerEndPrice)
 na

// Pearson's R
var label r = na
transparent = color.new(color.white, 100)
label.delete(r[1])
if showPearson and not na(pearsonR)
 r := label.new(bar_index - len + 1, lowerStartPrice, str.tostring(pearsonR,
'#.################'), color=transparent, textcolor=#0000ff, size=size.normal,
style=label.style_label_up)
 r

Zig Zag

//@version=5
indicator('Zig Zag', overlay = true)

float dev_threshold = input.float(title = 'Deviation (%)', defval = 5, minval =
1, maxval = 100)
int depth = input.int(title = 'Depth', defval = 10, minval = 1)

type Point
 int index
 float price

type Pivot
 line ln
 bool isHigh
 Point point

var pivotArray = array.new<Pivot>()
int length = math.floor(depth / 2)
float pH = ta.pivothigh(high, length, length)
float pL = ta.pivotlow(low, length, length)

calcDeviation(base_price, price) =>
 100 * math.abs(price - base_price) / base_price

newPivot(Point lastPoint, bool isHigh, int index, float price) =>
 line ln = line.new(lastPoint.index, lastPoint.price, index, price,
color = color.red, width = 2)
 Pivot pivot = Pivot.new(ln, isHigh, Point.new(index, price))
 array.push(pivotArray, pivot)
 pivot

updatePivot(Pivot pivot, int index, float price) =>
 line ln = pivot.ln
 line.set_xy2(ln, index, price)
 pivot.point.index := index
 pivot.point.price := price
 pivot

isPivotFound(bool isHigh, float price) =>
 bool result = false
 int index = bar_index[length]
 int size = array.size(pivotArray)

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#id29

 Pivot prevPivot = size >= 1 ? array.get(pivotArray, size - 1) :
newPivot(Point.new(index, price), isHigh, index, price)

 if prevPivot.isHigh and not na(prevPivot.ln)
 m = isHigh ? 1 : -1
 if price * m > prevPivot.point.price * m
 updatePivot(prevPivot, index, price)
 result := true
 else if na(prevPivot.ln) or math.abs(calcDeviation(prevPivot.point.price,
price)) >= dev_threshold
 newPivot(prevPivot.point, isHigh, index, price)
 result := true
 result

isPivotFound(true, pH)
isPivotFound(false, pL)

Non-standard charts data
• Introduction
• `ticker.heikinashi()`
• `ticker.renko()`
• `ticker.linebreak()`
• `ticker.kagi()`
• `ticker.pointfigure()`

Introduction
These functions allow scripts to fetch information from non-standard bars or chart types, regardless
of the type of chart the script is running on. They are: ticker.heikinashi(), ticker.renko(),
ticker.linebreak(), ticker.kagi() and ticker.pointfigure(). All of them work in the same manner; they
create a special ticker identifier to be used as the first argument in a request.security() function call.

`ticker.heikinashi()`
Heikin-Ashi means average bar in Japanese. The open/high/low/close values of Heikin-Ashi
candlesticks are synthetic; they are not actual market prices. They are calculated by averaging
combinations of real OHLC values from the current and previous bar. The calculations used make
Heikin-Ashi bars less noisy than normal candlesticks. They can be useful to make visual
assessments, but are unsuited to backtesting or automated trading, as orders execute on market
prices — not Heikin-Ashi prices.

The ticker.heikinashi() function creates a special ticker identifier for requesting Heikin-Ashi data
with the request.security() function.

This script requests the close value of Heikin-Ashi bars and plots them on top of the normal
candlesticks:

//@version=5
indicator("HA Close", "", true)
haTicker = ticker.heikinashi(syminfo.tickerid)
haClose = request.security(haTicker, timeframe.period, close)
plot(haClose, "HA Close", color.black, 3)

https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Dheikinashi
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#id11
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Dpointfigure
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Dkagi
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Dlinebreak
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Drenko
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Dheikinashi
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#id10
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#id8
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#id6
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#id4
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#introduction

Note that:

• The close values for Heikin-Ashi bars plotted as the black line are very different from those
of real candles using market prices. They act more like a moving average.

• The black line appears over the chart bars because we have selected “Visual Order/Bring to
Front” from the script’s “More” menu.

If you wanted to omit values for extended hours in the last example, an intermediary ticker without
extended session information would need to be created first:

//@version=5
indicator("HA Close", "", true)
regularSessionTicker = ticker.new(syminfo.prefix, syminfo.ticker,
session.regular)
haTicker = ticker.heikinashi(regularSessionTicker)
haClose = request.security(haTicker, timeframe.period, close, gaps =
barmerge.gaps_on)
plot(haClose, "HA Close", color.black, 3, plot.style_linebr)

Note that:

• We use the ticker.new() function first, to create a ticker without extended session
information.

• We use that ticker instead of syminfo.tickerid in our ticker.heikinashi() call.
• In our request.security() call, we set the gaps parameter’s value to barmerge.gaps_on.

This instructs the function not to use previous values to fill slots where data is absent. This
makes it possible for it to return na values outside of regular sessions.

• To be able to see this on the chart, we also need to use a special plot.style_linebr
style, which breaks the plots on na values.

This script plots Heikin-Ashi candles under the chart:

//@version=5
indicator("Heikin-Ashi candles")
CANDLE_GREEN = #26A69A
CANDLE_RED = #EF5350

haTicker = ticker.heikinashi(syminfo.tickerid)
[haO, haH, haL, haC] = request.security(haTicker, timeframe.period, [open, high,
low, close])
candleColor = haC >= haO ? CANDLE_GREEN : CANDLE_RED
plotcandle(haO, haH, haL, haC, color = candleColor)

Note that:

• We use a tuple with request.security() to fetch four values with the same call.
• We use plotcandle() to plot our candles. See the Bar plotting page for more information.

`ticker.renko()`
Renko bars only plot price movements, without taking time or volume into consideration. They look
like bricks stacked in adjacent columns [1]. A new brick is only drawn after the price passes the top
or bottom by a predetermined amount. The ticker.renko() function creates a ticker id which can be

https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Drenko
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#ticks
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#id12
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_plotting.html#pagebarplotting
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#pagevariabledeclarations-tupledeclarations
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Dheikinashi
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dtickerid
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Dnew

used with request.security() to fetch Renko values, but there is no Pine Script® function to draw
Renko bars on the chart:

//@version=5
indicator("", "", true)
renkoTicker = ticker.renko(syminfo.tickerid, "ATR", 10)
renkoLow = request.security(renkoTicker, timeframe.period, low)
plot(renkoLow)

`ticker.linebreak()`
The Line Break chart type displays a series of vertical boxes that are based on price changes [1].
The ticker.linebreak() function creates a ticker id which can be used with request.security() to fetch
“Line Break” values, but there is no Pine Script® function to draw such bars on the chart:

//@version=5
indicator("", "", true)
lineBreakTicker = ticker.linebreak(syminfo.tickerid, 3)
lineBreakClose = request.security(lineBreakTicker, timeframe.period, close)
plot(lineBreakClose)

`ticker.kagi()`
Kagi charts are made of a continuous line that changes directions. The direction changes when the
price changes [1] beyond a predetermined amount. The ticker.kagi() function creates a ticker id
which can be used with request.security() to fetch “Kagi” values, but there is no Pine Script®
function to draw such bars on the chart:

//@version=5
indicator("", "", true)
kagiBreakTicker = ticker.linebreak(syminfo.tickerid, 3)
kagiBreakClose = request.security(kagiBreakTicker, timeframe.period, close)
plot(kagiBreakClose)

`ticker.pointfigure()`
Point and Figure (PnF) charts only plot price movements [1], without taking time into
consideration. A column of X’s is plotted as the price rises, and O’s are plotted when price drops.
The ticker.pointfigure() function creates a ticker id which can be used with request.security() to
fetch “PnF” values, but there is no Pine Script® function to draw such bars on the chart. Every
column of X’s or O’s is represented with four numbers. You may think of them as synthetic OHLC
PnF values:

//@version=5
indicator("", "", true)
pnfTicker = ticker.pointfigure(syminfo.tickerid, "hl", "ATR", 14, 3)
[pnfO, pnfC] = request.security(pnfTicker, timeframe.period, [open, close],
barmerge.gaps_on)
plot(pnfO, "PnF Open", color.green, 4, plot.style_linebr)
plot(pnfC, "PnF Close", color.red, 4, plot.style_linebr)

Footnotes

[1] (1, 2, 3, 4) On TradingView, Renko, Line Break, Kagi and PnF chart types are generated from
OHLC values from a lower timeframe. These chart types thus represent only an approximation

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#id9
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#id7
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#id3
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Dpointfigure
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#ticks
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#id15
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Dkagi
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#ticks
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#id14
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Dlinebreak
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#ticks
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Non-standard_charts_data.html#id13
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity

of what they would be like if they were generated from tick data.

Plots
• Introduction
• `plot()` parameters
• Plotting conditionally

• Value control
• Color control

• Levels
• Offsets
• Plot count limit
• Scale

• Merging two indicators

Introduction
The plot() function is the most frequently used function used to display information calculated
using Pine scripts. It is versatile and can plot different styles of lines, histograms, areas, columns
(like volume columns), fills, circles or crosses.

The use of plot() to create fills is explained in the page on Fills.

This script showcases a few different uses of plot() in an overlay script:

//@version=5
indicator("`plot()`", "", true)
plot(high, "Blue `high` line")
plot(math.avg(close, open), "Crosses in body center", close > open ?
color.lime : color.purple, 6, plot.style_cross)
plot(math.min(open, close), "Navy step line on body low point", color.navy, 3,
plot.style_stepline)
plot(low, "Gray dot on `low`", color.gray, 3, plot.style_circles)

color VIOLET = #AA00FF
color GOLD = #CCCC00
ma = ta.alma(hl2, 40, 0.85, 6)
var almaColor = color.silver
almaColor := ma > ma[2] ? GOLD : ma < ma[2] ? VIOLET : almaColor
plot(ma, "Two-color ALMA", almaColor, 2)

Note that:

• The first plot() call plots a 1-pixel blue line across the bar highs.
• The second plots crosses at the mid-point of bodies. The crosses are colored lime when the

bar is up and purple when it is down. The argument used for linewidth is 6 but it is not a
pixel value; just a relative size.

• The third call plots a 3-pixel wide step line following the low point of bodies.
• The fourth call plot a gray circle at the bars’ low.
• The last plot requires some preparation. We first define our bull/bear colors, calculate an

https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Fills.html#pagefills
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#merging-two-indicators
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#scale
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#plot-count-limit
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#offsets
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#levels
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#color-control
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#value-control
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#plotting-conditionally
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#plot-parameters
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#introduction

Arnaud Legoux Moving Average, then make our color calculations. We initialize our color
variable on bar zero only, using var. We initialize it to color.silver, so on the dataset’s first
bars, until one of our conditions causes the color to change, the line will be silver. The
conditions that change the color of the line require it to be higher/lower than its value two
bars ago. This makes for less noisy color transitions than if we merely looked for a
higher/lower value than the previous one.

This script shows other uses of plot() in a pane:

//@version=5
indicator("Volume change", format = format.volume)

color GREEN = #008000
color GREEN_LIGHT = color.new(GREEN, 50)
color GREEN_LIGHTER = color.new(GREEN, 85)
color PINK = #FF0080
color PINK_LIGHT = color.new(PINK, 50)
color PINK_LIGHTER = color.new(PINK, 90)

bool barUp = ta.rising(close, 1)
bool barDn = ta.falling(close, 1)
float volumeChange = ta.change(volume)

volumeColor = barUp ? GREEN_LIGHTER : barDn ? PINK_LIGHTER : color.gray
plot(volume, "Volume columns", volumeColor, style = plot.style_columns)

volumeChangeColor = barUp ? volumeChange > 0 ? GREEN : GREEN_LIGHT :
volumeChange > 0 ? PINK : PINK_LIGHT
plot(volumeChange, "Volume change columns", volumeChangeColor, 12,
plot.style_histogram)

plot(0, "Zero line", color.gray)

Note that:

• We are plotting normal volume values as wide columns above the zero line (see the style
= plot.style_columns in our plot() call).

• Before plotting the columns we calculate our volumeColor by using the values of the
barUp and barDn boolean variables. They become respectively true when the current
bar’s close is higher/lower than the previous one. Note that the “Volume” built-in does not
use the same condition; it identifies an up bar with close > open. We use the
GREEN_LIGHTER and PINK_LIGHTER colors for the volume columns.

• Because the first plot plots columns, we do not use the linewidth parameter, as it has no
effect on columns.

• Our script’s second plot is the change in volume, which we have calculated earlier using
ta.change(volume). This value is plotted as a histogram, for which the linewidth
parameter controls the width of the column. We make this width 12 so that histogram
elements are thinner than the columns of the first plot. Positive/negative volumeChange
values plot above/below the zero line; no manipulation is required to achieve this effect.

• Before plotting the histogram of volumeChange values, we calculate its color value,
which can be one of four different colors. We use the bright GREEN or PINK colors when
the bar is up/down AND the volume has increased since the last bar (volumeChange >
0). Because volumeChange is positive in this case, the histogram’s element will be
plotted above the zero line. We use the bright GREEN_LIGHT or PINK_LIGHT colors

https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_color%7Bdot%7Dsilver
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/support/solutions/43000594683

when the bar is up/down AND the volume has NOT increased since the last bar. Because
volumeChange is negative in this case, the histogram’s element will be plotted below the
zero line.

• Finally, we plot a zero line. We could just as well have used hline(0) there.
• We use format = format.volume in our indicator() call so that large values displayed

for this script are abbreviated like those of the built-in “Volume” indicator.

plot() calls must always be placed in a line’s first position, which entails they are always in the
script’s global scope. They can’t be placed in user-defined functions or structures like if, for, etc.
Calls to plot() can, however, be designed to plot conditionally in two ways, which we cover in the
Conditional plots section of this page.

A script can only plot in its own visual space, whether it is in a pane or on the chart as an overlay.
Scripts running in a pane can only color bars in the chart area.

`plot()` parameters
The plot() function has the following signature:

plot(series, title, color, linewidth, style, trackprice, histbase, offset, join,
editable, show_last, display) → plot

The parameters of plot() are:

series
It is the only mandatory parameter. Its argument must be of “series int/float” type. Note that
because the auto-casting rules in Pine Script® convert in the int ? float ? bool direction, a
“bool” type variable cannot be used as is; it must be converted to an “int” or a “float” for use
as an argument. For example, if newDay is of “bool” type, then newDay ? 1 : 0 can be
used to plot 1 when the variable is true, and zero when it is false.

title

Requires a “const string” argument, so it must be known at compile time. The string appears:

• In the script’s scale when the “Chart settings/Scales/Indicator Name Label” field is
checked.

• In the Data Window.
• In the “Settings/Style” tab.
• In the dropdown of input.source() fields.
• In the “Condition” field of the “Create Alert” dialog box, when the script is selected.
• As the column header when exporting chart data to a CSV file.

color
Accepts “series color”, so can be calculated on the fly, bar by bar. Plotting with na as the
color, or any color with a transparency of 100, is one way to hide plots when they are not
needed.

linewidth
Is the plotted element’s size, but it does not apply to all styles. When a line is plotted, the unit
is pixels. It has no impact when plot.style_columns is used.

style

The available arguments are:

• plot.style_line (the default): It plots a continous line using the linewidth argument
in pixels for its width. na values will not plot as a line, but they will be bridged when a

https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_line
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_columns
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsource
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_coloring.html#pagebarcoloring
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator

value that is not na comes in. Non-na values are only bridged if they are visible on the
chart.

• plot.style_linebr: Allows the plotting of discontinuous lines by not plotting on na
values, and not joining gaps, i.e., bridging over na values.

• plot.style_stepline: Plots using a staircase effect. Transitions between changes in
values are done using a vertical line drawn in middle of bars, as opposed to a point-to-
point diagonal joining the midpoints of bars. Can also be used to achieve an effect
similar to that of plot.style_linebr, but only if care is taken to plot no color on na
values.

• plot.style_area: plots a line of linewidth width, filling the area between the line
and the histbase. The color argument is used for both the line and the fill. You
can make the line a different color by using another plot() call. Positive values are
plotted above the histbase, negative values below it.

• plot.style_areabr: This is similar to plot.style_area but it doesn’t bridge over na values.
Another difference is how the indicator’s scale is calculated. Only the plotted values
serve in the calculation of the y range of the script’s visual space. If only high values
situated far away from the histbase are plotted, for example, those values will be
used to calculate the y scale of the script’s visual space. Positive values are plotted
above the histbase, negative values below it.

• plot.style_columns: Plots columns similar to those of the “Volume” built-in indicator.
The linewidth value does not affect the width of the columns. Positive values are
plotted above the histbase, negative values below it. Always includes the value of
histbase in the y scale of the script’s visual space.

• plot.style_histogram: Plots columns similar to those of the “Volume” built-in indicator,
except that the linewidth value is used to determine the width of the histogram’s
bars in pixels. Note that since linewidth requires an “input int” value, the width of
the histogram’s bars cannot vary bar to bar. Positive values are plotted above the
histbase, negative values below it. Always includes the value of histbase in the
y scale of the script’s visual space.

• plot.style_circles and plot.style_cross: These plot a shape that is not joined across bars
unless join = true is also used. For these styles, the linewidth argument
becomes a relative sizing measure — its units are not pixels.

trackprice
The default value of this is false. When it is true, a dotted line made up of small squares
will be plotted the full width of the script’s visual space. It is often used in conjuction with
show_last = 1, offset = -99999 to hide the actual plot and only leave the
residual dotted line.

histbase
It is the reference point used with plot.style_area, plot.style_columns and
plot.style_histogram. It determines the level separating positive and negative values of the
series argument. It cannot be calculated dynamically, as an “input int/float” is required.

offset
This allows shifting the plot in the past/future using a negative/positive offset in bars. The
value cannot change during the script’s execution.

join
This only affect styles plot.style_circles or plot.style_cross. When true, the shapes are
joined by a one-pixel line.

editable
This boolean parameter controls whether or not the plot’s properties can be edited in the
“Settings/Style” tab. Its default value is true.

https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_cross
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_circles
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_histogram
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_columns
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_area
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_cross
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_circles
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_histogram
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_columns
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_area
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_area
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_area
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_linebr
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_stepline
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_linebr
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na

show_last
Allows control over how many of the last bars the plotted values are visible. An “input int”
argument is required, so it cannot be calculated dynamically.

display

The default is display.all. When it is set to display.none, plotted values will not affect the scale
of the script’s visual space. The plot will be invisible and will not appear in indicator values or
the Data Window. It can be useful in plots destined for use as external inputs for other scripts,
or for plots used with the {{plot("[plot_title]")}} placeholder in alertcondition()
calls, e.g.:

//@version=5
indicator("")
r = ta.rsi(close, 14)
xUp = ta.crossover(r, 50)
plot(r, "RSI", display = display.none)
alertcondition(xUp, "xUp alert", message = 'RSI is bullish at:
{{plot("RSI")}}')

Plotting conditionally
plot() calls cannot be used in conditional structures such as if, but they can be controlled by varying
their plotted values, or their color. When no plot is required, you can either plot na values, or plot
values using na color or any color with 100 transparency (which also makes it invisible).

Value control

One way to control the display of plots is to plot na values when no plot is needed. Sometimes,
values returned by functions such as request.security() will return na values, when gaps =
barmerge.gaps_on is used, for example. In both these cases it is sometimes useful to plot
discontinuous lines. This script shows a few ways to do it:

//@version=5
indicator("Discontinuous plots", "", true)
bool plotValues = bar_index % 3 == 0
plot(plotValues ? high : na, color = color.fuchsia, linewidth = 6, style =
plot.style_linebr)
plot(plotValues ? high : na)
plot(plotValues ? math.max(open, close) : na, color = color.navy, linewidth = 6,
style = plot.style_cross)
plot(plotValues ? math.min(open, close) : na, color = color.navy, linewidth = 6,
style = plot.style_circles)
plot(plotValues ? low : na, color = plotValues ? color.green : na, linewidth =
6, style = plot.style_stepline)

Note that:

• We define the condition determining when we plot using bar_index % 3 == 0, which
becomes true when the remainder of the division of the bar index by 3 is zero. This will
happen every three bars.

• In the first plot, we use plot.style_linebr, which plots the fuchsia line on highs. It is centered
on the bar’s horizontal midpoint.

• The second plot shows the result of plotting the same values, but without using special care

https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_linebr
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#id4
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#id3
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#var_display%7Bdot%7Dnone
https://www.tradingview.com/pine-script-reference/v5/#var_display%7Bdot%7Dall

to break the line. What’s happening here is that the thin blue line of the plain plot() call is
automatically bridged over na values (or gaps), so the plot does not interrupt.

• We then plot navy blue crosses and circles on the body tops and bottoms. The
plot.style_circles and plot.style_cross style are a simple way to plot discontinuous values,
e.g., for stop or take profit levels, or support & resistance levels.

• The last plot in green on the bar lows is done using plot.style_stepline. Note how its
segments are wider than the fuchsia line segments plotted with plot.style_linebr. Also note
how on the last bar, it only plots halfway until the next bar comes in.

• The plotting order of each plot is controlled by their order of appearance in the script. See

This script shows how you can restrict plotting to bars after a user-defined date. We use the
input.time() function to create an input widget allowing script users to select a date and time, using
Jan 1st 2021 as its default value:

//@version=5
indicator("", "", true)
startInput = input.time(timestamp("2021-01-01"))
plot(time > startInput ? close : na)

Color control

The Conditional coloring section of the page on colors discusses color control for plots. We’ll look
here at a few examples.

The value of the color parameter in plot() can be a constant, such as one of the built-in constant

colors or a color literal. In Pine Script®, the form-type of such colors is called “const color” (see
the Type system page). They are known at compile time:

//@version=5
indicator("", "", true)
plot(close, color = color.gray)

The color of a plot can also be determined using information that is only known when the script
begins execution on the first historical bar of a chart (bar zero, i.e., bar_index == 0 or
barstate.isfirst == true), as will be the case when the information needed to determine
a color depends on the chart the script is running on. Here, we calculate a plot color using the
syminfo.type built-in variable, which returns the type of the chart’s symbol. The form-type of
plotColor in this case will be “simple color”:

//@version=5
indicator("", "", true)
plotColor = switch syminfo.type
 "stock" => color.purple
 "futures" => color.red
 "index" => color.gray
 "forex" => color.fuchsia
 "crypto" => color.lime
 "fund" => color.orange
 "dr" => color.aqua
 "cfd" => color.blue
plot(close, color = plotColor)
printTable(txt) => var table t = table.new(position.middle_right, 1, 1),
table.cell(t, 0, 0, txt, bgcolor = color.yellow)
printTable(syminfo.type)

Plot colors can also be chosen through a script’s inputs. In this case, the lineColorInput
variable is of form-type “input color”:

https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dtype
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#pagetypesystem-color
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#pagecolors-constantcolors
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#pagecolors-constantcolors
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#pagecolors-conditionalcoloring
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#id5
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dtime
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_linebr
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_stepline
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_cross
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_circles
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

//@version=5
indicator("", "", true)
color lineColorInput = input(#1848CC, "Line color")
plot(close, color = lineColorInput)

Finally, plot colors can also be a dynamic value, i.e., a calculated value that is only known on each
bar. These are of form-type “series color”:

//@version=5
indicator("", "", true)
plotColor = close >= open ? color.lime : color.red
plot(close, color = plotColor)

When plotting pivot levels, one common requirement is to avoid plotting level transitions. Using
lines is one alternative, but you can also use plot() like this:

//@version=5
indicator("Pivot plots", "", true)
pivotHigh = fixnan(ta.pivothigh(3,3))
plot(pivotHigh, "High pivot", ta.change(pivotHigh) ? na : color.olive, 3)
plotchar(ta.change(pivotHigh), "ta.change(pivotHigh)", "•", location.top, size =
size.small)

Note that:

• We use pivotHigh = fixnan(ta.pivothigh(3,3)) to hold our pivot values.
Because ta.pivothigh() only returns a value when a new pivot is found, we use fixnan() to
fill the gaps with the last pivot value returned. The gaps here refer to the na values
ta.pivothigh() returns when no new pivot is found.

• Our pivots are detected three bars after they occur because we use the argument 3 for both
the leftbars and rightbars parameters in our ta.pivothigh() call.

• The last plot is plotting a continuous value, but it is setting the plot’s color to na when the
pivot’s value changes, so the plot isn’t visible then. Because of this, a visible plot will only
appear on the bar following the one where we plotted using na color.

• The blue dot indicates when a new high pivot is detected and no plot is drawn between the
preceding bar and that one. Note how the pivot on the bar indicated by the arrow has just
been detected in the realtime bar, three bars later, and how no plot is drawn. The plot will
only appear on the next bar, making the plot visible four bars after the actual pivot.

Levels
Pine Script® has an hline() function to plot horizontal lines (see the page on Levels). hline() is
useful because it has some line styles unavailable with plot(), but it also has some limitations,
namely that it does not accept “series color”, and that its price parameter requires an “input
int/float”, so cannot vary during the script’s execution.

You can plot levels with plot() in a few different ways. This shows a CCI indicator with levels
plotted using plot():

//@version=5
indicator("CCI levels with `plot()`")
plot(ta.cci(close, 20))

https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/support/solutions/43000502001
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Levels.html#pagelevels
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#id6
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dpivothigh
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dpivothigh
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_fixnan
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dpivothigh
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#pagelinesandboxes

plot(0, "Zero", color.gray, 1, plot.style_circles)
plot(bar_index % 2 == 0 ? 100 : na, "100", color.lime, 1, plot.style_linebr)
plot(bar_index % 2 == 0 ? -100 : na, "-100", color.fuchsia, 1,
plot.style_linebr)
plot(200, "200", color.green, 2, trackprice = true, show_last = 1, offset =
-99999)
plot(-200, "-200", color.red, 2, trackprice = true, show_last = 1, offset =
-99999)
plot(300, "300", color.new(color.green, 50), 1)
plot(-300, "-300", color.new(color.red, 50), 1)

Note that:

• The zero level is plotted using plot.style_circles.
• The 100 levels are plotted using a conditional value that only plots every second bar. In

order to prevent the na values from being bridged, we use the plot.style_linebr line style.
• The 200 levels are plotted using trackprice = true to plot a distinct pattern of small

squares that extends the full width of the script’s visual space. The show_last = 1 in
there displays only the last plotted value, which would appear as a one-bar straight line if the
next trick wasn’t also used: the offset = -99999 pushes that one-bar segment far away
in the past so that it is never visible.

• The 300 levels are plotted using a continuous line, but a lighter transparency is used to make
them less prominent.

Offsets
The offset parameter specifies the shift used when the line is plotted (negative values shift in the
past, positive values shift into the future. For example:

//@version=5
indicator("", "", true)
plot(close, color = color.red, offset = -5)
plot(close, color = color.lime, offset = 5)

As can be seen in the screenshot, the red series has been shifted to the left (since the argument’s
value is negative), while the green series has been shifted to the right (its value is positive).

Plot count limit
Each script is limited to a maximum plot count of 64. All plot*() calls and alertcondition() calls
count in the plot count of a script. Some types of calls count for more than one in the total plot
count.

plot() calls count for one in the total plot count if they use a “const color” argument for the color
parameter, which means it is known at compile time, e.g.:

plot(close, color = color.green)

When they use another form, such as any one of these, they will count for two in the total plot
count:

plot(close, color = syminfo.mintick > 0.0001 ? color.green : color.red) //?
"simple color"
plot(close, color = input.color(color.purple)) //? "input color"

https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#func_alertcondition
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#id8
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#id7
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_linebr
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_plot%7Bdot%7Dstyle_circles

plot(close, color = close > open ? color.green : color.red) //? "series color"
plot(close, color = color.new(color.silver, close > open ? 40 : 0)) //? "series
color"

Scale
Not all values can be plotted everywhere. Your script’s visual space is always bound by upper and
lower limits that are dynamically adjusted with the values plotted. An RSI indicator will plot values
between 0 and 100, which is why it is usually displayed in a distinct pane — or area — above or
below the chart. If RSI values were plotted as an overlay on the chart, the effect would be to distort
the symbol’s normal price scale, unless it just hapenned to be close to RSI’s 0 to 100 range. This
shows an RSI signal line and a centerline at the 50 level, with the script running in a separate pane:

//@version=5
indicator("RSI")
myRSI = ta.rsi(close, 20)
bullColor = color.from_gradient(myRSI, 50, 80, color.new(color.lime, 70),
color.new(color.lime, 0))
bearColor = color.from_gradient(myRSI, 20, 50, color.new(color.red, 0),
color.new(color.red, 70))
myRSIColor = myRSI > 50 ? bullColor : bearColor
plot(myRSI, "RSI", myRSIColor, 3)
hline(50)

Note that the y axis of our script’s visual space is automatically sized using the range of values
plotted, i.e., the values of RSI. See the page on Colors for more information on the
color.from_gradient() function used in the script.

If we try to plot the symbol’s close values in the same space by adding the following line to our
script:

plot(close)

This is what happens:

The chart is on the BTCUSD symbol, whose close prices are around 40000 during this period.
Plotting values in the 40000 range makes our RSI plots in the 0 to 100 range indiscernible. The
same distorted plots would occur if we placed the RSI indicator on the chart as an overlay.

Merging two indicators

If you are planning to merge two signals in one script, first consider the scale of each. It is
impossible, for example, to correctly plot an RSI and a MACD in the same script’s visual space
because RSI has a fixed range (0 to 100) while MACD doesn’t, as it plots moving averages
calculated on price._

If both your indicators used fixed ranges, you can shift the values of one of them so they do not
overlap. We could, for example, plot both RSI (0 to 100) and the True Strength Indicator (TSI) (-
100 to +100) by displacing one of them. Our strategy here will be to compress and shift the TSI
values so they plot over RSI:

https://www.tradingview.com/support/solutions/43000502338
https://www.tradingview.com/support/solutions/43000592290
https://www.tradingview.com/support/solutions/43000592290
https://www.tradingview.com/support/solutions/43000502338
https://www.tradingview.com/support/solutions/43000502344
https://www.tradingview.com/support/solutions/43000502338
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#id10
https://www.tradingview.com/support/solutions/43000502338
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dfrom_gradient
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#pagecolors
https://www.tradingview.com/support/solutions/43000502338
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Plots.html#id9

//@version=5
indicator("RSI and TSI")
myRSI = ta.rsi(close, 20)
bullColor = color.from_gradient(myRSI, 50, 80, color.new(color.lime, 70),
color.new(color.lime, 0))
bearColor = color.from_gradient(myRSI, 20, 50, color.new(color.red, 0),
color.new(color.red, 70))
myRSIColor = myRSI > 50 ? bullColor : bearColor
plot(myRSI, "RSI", myRSIColor, 3)
hline(100)
hline(50)
hline(0)

// 1. Compress TSI's range from -100/100 to -50/50.
// 2. Shift it higher by 150, so its -50 min value becomes 100.
myTSI = 150 + (100 * ta.tsi(close, 13, 25) / 2)
plot(myTSI, "TSI", color.blue, 2)
plot(ta.ema(myTSI, 13), "TSI EMA", #FF006E)
hline(200)
hline(150)

Note that:

• We have added levels using hline to situate both signals.

• In order for both signal lines to oscillate on the same range of 100, we divide the TSI value
by 2 because it has a 200 range (-100 to +100). We then shift this value up by 150 so it
oscillates between 100 and 200, making 150 its centerline.

• The manipulations we make here are typical of the compromises required to bring two
indicators with different scales in the same visual space, even when their values, contrary to
MACD, are bounded in a fixed range.

Repainting
• Introduction

• For script users
• For Pine Script ® programmers

• Historical vs realtime calculations
• Fluid data values
• Repainting `request.security()` calls
• Using `request.security()` at lower timeframes
• Future leak with `request.security()`
• `varip`
• Bar state built-ins
• `timenow`
• Strategies

• Plotting in the past
• Dataset variations

• Starting points

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#starting-points
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#dataset-variations
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#plotting-in-the-past
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#strategies
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#timenow
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#bar-state-built-ins
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#varip
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#future-leak-with-request-security
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#using-request-security-at-lower-timeframes
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#repainting-request-security-calls
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#fluid-data-values
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#historical-vs-realtime-calculations
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#for-pine-script-programmers
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#for-script-users
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#introduction
https://www.tradingview.com/support/solutions/43000502344
https://www.tradingview.com/support/solutions/43000592290
https://www.tradingview.com/pine-script-reference/v5/#fun_hline

• Revision of historical data

Introduction
We define repainting as: script behavior causing historical vs realtime calculations or plots to
behave differently.

Repainting behavior is widespread and can be caused by many factors. Following our definition,
our estimate is that more than 95% of indicators in existence repaint. Widely used indicators like
MACD and RSI, for example, exhibit one form of repainting because they show one value on
historical bars, yet when running in realtime they will produce results that constantly fluctuate until
the realtime bar closes. They thus behave differently on historical and realtime bars. This does not
necessarily make them less useful in all contexts, nor prevent knowledgeable traders from using
them. Who would think of discrediting a volume profile indicator, for example because it updates in
real time, and so repaints?

The different types of repainting we discuss in this page can be divided this way:

• Widespread and often acceptable: recalculation during the realtime bar (most classic
indicators like MACD, RSI, and the vast majority of indicators in the Community Scripts,
scripts using repainting request.security() calls, etc.). There is often nothing wrong in using
such scripts, provided you understand how they work. If you elect to use these scripts to
issue alerts or trade orders, however, then you should know if they are being generated using
the realtime or confirmed values, and decide for yourself if the script’s behavior meets your
requirements.

• Misleading: plotting in the past, calculating results in realtime that cannot be replicated on
historical bars, relocating past events (Ichimoku, most pivot scripts, most strategies using
calc_on_evey_tick = true, scripts using repainting request.security() calls when
their values are plotted on historical bars, as their behavior will not be the same in realtime,
most scripts using varip, most scripts using timenow, some scripts using barstate.*
variables).

• Unacceptable: scripts using future information, strategies running on non-standard charts,
scripts using realtime intrabar timeframes to generate alerts or orders.

• Unavoidable: revision of historical feeds by data suppliers, varying starting bar on historical
bars.

The first two types of repainting can be perfectly acceptable if:

1. You are aware of the behavior.
2. You can live with it, or
3. You can circumvent it.

It should now be clear to you that not all repainting behavior is inherently wrong and should be
avoided at all cost. In many situations, repainting indicators are exactly what’s needed. What’s
important is to know when repainting behavior is not acceptable to you. To avoid such situations,
you must understand exactly how the tools you use work, or how you should design the ones you
build. If you publish scripts, any potentially misleading repainting behavior should be mentioned
along with the other limitations of your script.

Note

We will not discuss the perils of using strategies on non-standard charts, as this problem is not
related to repainting. See the Backtesting on Non-Standard Charts: Caution! script for a discussion
of the subject.

https://www.tradingview.com/script/q9laJNG9-Backtesting-on-Non-Standard-Charts-Caution-PineCoders-FAQ/
https://www.tradingview.com/pine-script-reference/v5/#op_timenow
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/scripts/
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#revision-of-historical-data

For script users

You can very well decide to use repainting indicators if you understand how they behave, and that
behavior meets your trading methodology’s requirements. Don’t be one of those newcomers to
trading who slap “repaint” sentences on published scripts as if it discredits them. Doing so only
reveals your incomprehension of the subject.

The question “Does it repaint?” means nothing. Consequently, it cannot be answered in a
meaningful way. Why? Because it needs to be qualified. Instead, one could ask:

• Do you wait for the realtime bar to close before displaying your entry/exit markers?
• Do alerts wait for the end of the realtime bar before triggering?
• Do the higher timeframe plots repaint (which means they won’t plot the same way on

realtime bars as they do on historical bars)?
• Does your script plot in the past (as most pivot or zigzag scripts will do)?
• Does your strategy use calc_on_every_tick = true?
• Will your indicator display in realtime the same way it does on historical bars?
• Are you fetching future information with your request.security() calls?

What’s important is that you understand how the tools you use work, and if their behavior is
compatible with your objectives, repainting or not. As you will learn if you read this page,
repainting is a complex matter. It has many faces and many causes. Even if you don’t program in
Pine Script®, this page will help you understand the array of causes that can lead to repainting, and
hopefully enable more meaningful discussions with script authors.

For Pine Script ® programmers

As we discussed in the previous section, not all types of repainting behavior need to be avoided at
all costs, and as we will see in the following text, some can’t. We hope this page helps you better
understand the dynamics at play, so that you can make better design decisions concerning your
trading tools. This page’s content should help you avoid making the most common coding mistakes
that lead to repainting or misleading plots.

Whatever your design decisions are, if you publish your script, you should explain them to traders
so they can understand how your script behaves.

We will survey three broad categories of repainting causes:

• Historical vs realtime calculations
• Plotting in the past
• Dataset variations

Historical vs realtime calculations

Fluid data values

Historical data does not include records of intermediary price movements on bars; only open, high,
low and close values (OHLC).

On realtime bars (bars running when the instrument’s market is open), however, the high, low and
close values are not fixed; they can change values many times before the realtime bar closes and its
HLC values are fixed. They are fluid. This leads to a script sometimes working differently on
historical data and in real time, where only the open price will not change during the bar.

Any script using values like high, low and close in realtime is subject to producing calculations that

https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#id4
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#id3
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#id2

may not be repeatable on historical bars — thus repaint.

Let’s look at this simple script. It detects crosses of the close value (in the realtime bar, this
corresponds to the current price of the instrument) over and under an EMA:

//@version=5
indicator("Repainting", "", true)
ma = ta.ema(close, 5)
xUp = ta.crossover(close, ma)
xDn = ta.crossunder(close, ma)
plot(ma, "MA", color.black, 2)
bgcolor(xUp ? color.new(color.lime, 80) : xDn ? color.new(color.fuchsia, 80) :
na)

Note that:

• The script uses bgcolor() to color the background green when close crosses over the EMA,
and red on crosses under the EMA.

• The screen snapshot shows the script in realtime on a 30sec chart. A cross over the EMA has
been detected, thus the background of the realtime bar is green.

• The problem here is that nothing guarantees this condition will hold true until the end of the
realtime bar. The arrow points to the timer showing that 21 seconds remain in the realtime
bar, and anything could happen until then.

• We are witnessing a repainting script.

To prevent this repainting, we must rewrite our script so that it does not use values that fluctuate
during the realtime bar. This will require using values from a bar that has elapsed (typically the
preceding bar), or the open price, which does not vary in realtime.

We can achieve this in many ways. This method adds a and barstate.isconfirmed
condition to our cross detections, which requires the script to be executing on the bar’s last iteration,
when it closes and prices are confirmed. It is a simple way to avoid repainting:

//@version=5
indicator("Repainting", "", true)
ma = ta.ema(close, 5)
xUp = ta.crossover(close, ma) and barstate.isconfirmed
xDn = ta.crossunder(close, ma) and barstate.isconfirmed
plot(ma, "MA", color.black, 2)
bgcolor(xUp ? color.new(color.lime, 80) : xDn ? color.new(color.fuchsia, 80) :
na)

This uses the crosses detected on the previous bar:

//@version=5
indicator("Repainting", "", true)
ma = ta.ema(close, 5)
xUp = ta.crossover(close, ma)[1]
xDn = ta.crossunder(close, ma)[1]
plot(ma, "MA", color.black, 2)
bgcolor(xUp ? color.new(color.lime, 80) : xDn ? color.new(color.fuchsia, 80) :
na)

This uses only confirmed close and EMA values for its calculations:

//@version=5
indicator("Repainting", "", true)
ma = ta.ema(close[1], 5)
xUp = ta.crossover(close[1], ma)

https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor
https://www.tradingview.com/support/solutions/43000592270
https://www.tradingview.com/pine-script-reference/v5/#var_close

xDn = ta.crossunder(close[1], ma)
plot(ma, "MA", color.black, 2)
bgcolor(xUp ? color.new(color.lime, 80) : xDn ? color.new(color.fuchsia, 80) :
na)

This detects crosses between the realtime bar’s open and the value of the EMA from the previous
bars. Notice that the EMA is calculated using close, so it repaints. We must ensure we use a
confirmed value to detect crosses, thus ma[1] in the cross detection logic:

//@version=5
indicator("Repainting", "", true)
ma = ta.ema(close, 5)
xUp = ta.crossover(open, ma[1])
xDn = ta.crossunder(open, ma[1])
plot(ma, "MA", color.black, 2)
bgcolor(xUp ? color.new(color.lime, 80) : xDn ? color.new(color.fuchsia, 80) :
na)

Note that all these methods have one thing in common: while they prevent repainting, they
will also trigger signals later than repainting scripts. This is an inevitable compromise if one
wants to avoid repainting. You just can’t have your cake and eat it too.

Repainting `request.security()` calls

The data fetched with request.security() will differ on historical and realtime bars if the function is
not used in the correct manner. Repainting request.security() calls will produce historical data and
plots that cannot be replicated in realtime. Let’s look at a script showing the difference between
repainting and non-repainting request.security() calls:

//@version=5
indicator("Repainting vs non-repainting `request.security()`", "", true)
var BLACK_MEDIUM = color.new(color.black, 50)
var ORANGE_LIGHT = color.new(color.orange, 80)

tfInput = input.timeframe("1")

repaintingClose = request.security(syminfo.tickerid, tfInput, close)
plot(repaintingClose, "Repainting close", BLACK_MEDIUM, 8)

indexHighTF = barstate.isrealtime ? 1 : 0
indexCurrTF = barstate.isrealtime ? 0 : 1
nonRepaintingClose = request.security(syminfo.tickerid, tfInput,
close[indexHighTF])[indexCurrTF]
plot(nonRepaintingClose, "Non-repainting close", color.fuchsia, 3)

if ta.change(time(tfInput))
 label.new(bar_index, na, " ", yloc = yloc.abovebar, style = ↻
label.style_none, textcolor = color.black, size = size.large)
bgcolor(barstate.isrealtime ? ORANGE_LIGHT : na)

This is what its output looks like on a 5sec chart that has been running the script for a few minutes:

Note that:

• The orange background identifies the realtime bar, and elapsed realtime bars.
• A black curved arrow indicates when a new higher timeframe comes in.
• The thick gray line shows the repainting request.security() call used to initialize

https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#id6
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_open

repaintingClose.
• The fuchsia line shows the non-repainting request.security() call used to initialize
nonRepaintingClose.

• The behavior of the repainting line is completely different on historical bars and in realtime.
On historical bars, it shows the new value of a completed timeframe on the close of the bar
where it completes. It then stays stable until another timeframe completes. The problem is
that in realtime, it follows the current close price, so it moves all the time and changes on
each bar.

• The behavior of the non-repainting fuchsia line, in contrast, behaves exactly the same way
on historical bars and in realtime. It updates on the bar following the completion of the
higher timeframe, and doesn’t move until the bar after another higher timeframe completes.
It is more reliable and does not mislead script users. Note that while new higher timeframe
data comes in at the close of historical bars, it will be available on the open of the same bar
in realtime.

This script shows a nonRepaintingSecurity() function that can be used to do the same as
our non-repainting code in the previous example:

//@version=5
indicator("Non-repainting `nonRepaintingSecurity()`", "", true)

tfInput = input.timeframe("1")

nonRepaintingSecurity(sym, tf, src) =>
 request.security(sym, tf, src[barstate.isrealtime ? 1 : 0])
[barstate.isrealtime ? 0 : 1]

nonRepaintingClose = nonRepaintingSecurity(syminfo.tickerid, "1", close)
plot(nonRepaintingClose, "Non-repainting close", color.fuchsia, 3)

Another way to produce non-repainting higher timeframe data is this, which uses an offset of [1]
on the series, and lookahead:

nonRepaintingSecurityAlternate(sym, tf, src) =>
 request.security(sym, tf, src[1], lookahead = barmerge.lookahead_on)

It will produce the same non-repainting behavior as nonRepaintingSecurity(). Note that
the [1] offset to the series and the use of lookahead = barmerge.lookahead_on are
interdependent. One cannot be removed without compromising the functionality of the function.
Also note that occasional one-bar variations between when the nonRepaintingSecurity()
and nonRepaintingSecurityAlternate() values come in on historical bars are to be
expected.

Using `request.security()` at lower timeframes

Some scripts use request.security() to request data from a timeframe lower than the chart’s
timeframe. This can be useful when functions specifically designed to handle intrabars at lower
timeframes are sent down the timeframe. When this type of user-defined function requires the
detection of the intrabars’ first bar, as most do, the technique will only work on historical bars. This
is due to the fact that realtime intrabars are not yet sorted. The impact of this is that such scripts
cannot reproduce in real time their behavior on historical bars. Any logic generating alerts, for
example, will be flawed, and constant refreshing will be required to recalculate elapsed realtime
bars as historical bars.

When used at lower timeframes than the chart’s without specialized functions able to distinguish
between intrabars, request.security() will only return the value of the last intrabar in the dilation of

https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#id7
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity

the chart’s bar, which is usually not useful, and will also not reproduce in real time, so lead to
repainting.

For all these reasons, unless you understand the subtleties of using request.security() at lower
timeframes than the chart’s, it is best to avoid using the function at those timeframes. Higher-quality
scripts will have logic to detect such anomalies and prevent the display of results which would be
invalid when a lower timeframe is used.

Future leak with `request.security()`

When request.security() is used with lookahead = barmerge.lookahead_on to fetch
prices without offsetting the series by [1], it will return data from the future on historical bars,
which is dangerously misleading.

While historical bars will magically display future prices before they should be known, no
lookahead is possible in realtime because the future there is unknown, as it should, so no future bars
exist.

This is an example:

// FUTURE LEAK! DO NOT USE!
//@version=5
indicator("Future leak", "", true)
futureHigh = request.security(syminfo.tickerid, "D", high, lookahead =
barmerge.lookahead_on)
plot(futureHigh)

Note how the higher timeframe line is showing the timeframe’s high value before it occurs. The
solution is to use the function like we do in our nonRepaintingSecurity() shown earlier.

Public scripts using this misleading technique will be moderated.

`varip`

Scripts using the varip declaration mode for variables (see our section on varip for more
information) save information across realtime updates, which cannot be reproduced on historical
bars where only OHLC information is available. Such scripts may be useful in realtime, including
to generate alerts, but their logic cannot be backtested, nor can their plots on historical bars reflect
calculations that will be done in realtime.

Bar state built-ins

Scripts using bar states may or may not repaint. As we have seen in the previous section, using
barstate.isconfirmed is actually one way to avoid repainting that will reproduce on historical bars,
which are always “confirmed”. Uses of other bar states such as barstate.isnew, however, will lead to
repainting. The reason is that on historical bars, barstate.isnew is true on the bar’s close, yet in
realtime, it is true on the bar’s open. Using the other bar state variables will usually cause some
type of behavioral discrepancy between historical and realtime bars.

`timenow`

The timenow built-in returns the current time. Scripts using this variable cannot show consistent
historical and realtime behavior, so they necessarily repaint.

https://www.tradingview.com/pine-script-reference/v5/#var_timenow
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#id11
https://www.tradingview.com/pine-script-reference/v5/#open
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disnew
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disnew
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Disconfirmed
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Bar_states.html#pagebarstates
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#id10
https://www.tradingview.com/pine-script-docs/en/v5/language/Variable_declarations.html#pagevariabledeclarations-varip
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#id9
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#id8
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity

Strategies

Strategies using calc_on_every_tick = true execute on each realtime update, while
strategies run on the close of historical bars. They will most probably not generate the same order
executions, and so repaint. Note that when this happens, it also invalidates backtesting results, as
they are not representative of the strategy’s behavior in realtime.

Plotting in the past
Scripts detecting pivots after 5 bars have elapsed will often go back in the past to plot pivot levels
or values on the actual pivot, 5 bars in the past. This will often cause unsuspecting traders looking at
plots on historical bars to infer that when the pivot happens in realtime, the same plots will apppear
on the pivot when it occurs, as opposed to when it is detected.

Let’s look at a script showing the price of high pivots by placing the price in the past, 5 bars after
the pivot was detected:

//@version=5
indicator("Plotting in the past", "", true)
pHi = ta.pivothigh(5, 5)
if not na(pHi)
 label.new(bar_index[5], na, str.tostring(pHi, format.mintick) + "\n?", yloc
= yloc.abovebar, style = label.style_none, textcolor = color.black, size =
size.normal)

Note that:

• This script repaints because an elapsed realtime bar showing no price may get a price placed
on it if it is identified as a pivot, 5 bars after the actual pivot occurs.

• The display looks great, but it can be misleading.

The best solution to this problem when developing script for others is to plot without an offset by
default, but give the option for script users to turn on plotting in the past through inputs, so they are
necessarily aware of what the script is doing, e.g.:

//@version=5
indicator("Plotting in the past", "", true)
plotInThePast = input(false, "Plot in the past")
pHi = ta.pivothigh(5, 5)
if not na(pHi)
 label.new(bar_index[plotInThePast ? 5 : 0], na, str.tostring(pHi,
format.mintick) + "\n?", yloc = yloc.abovebar, style = label.style_none,
textcolor = color.black, size = size.normal)

Dataset variations

Starting points

Scripts begin executing on the chart’s first historical bar, and then execute on each bar sequentially,
as is explained in this manual’s page on Pine Script®’s execution model. If the first bar changes,
then the script will often not calculate the same way it did when the dataset began at a different
point in time.

The following factors have an impact on the quantity of bars you see on your charts, and their

https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#id15
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#id14
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#id13
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#id12

starting point:

• The type of account you hold
• The historical data available from the data supplier
• The alignment requirements of the dataset, which determine its starting point

These are the account-specific bar limits:

• 20000 historical bars for the Premium plan.
• 10000 historical bars for Pro and Pro+ plans.
• 5000 historical bars for other plans.

Starting points are determined using the following rules, which depend on the chart’s timeframe:

• 1, 5, 10, 15, 30 seconds: aligns to the beginning of a day.
• 1 - 14 minutes: aligns to the beginning of a week.
• 15 - 29 minutes: aligns to the beginning of a month.
• 30 - 1439 minutes: aligns to the beginning of a year.
• 1440 minutes and higher: aligns to the first available historical data point.

As time goes by, these factors cause your chart’s history to start at different points in time. This
often has an impact on your scripts calculations, because changes in calculation results in early bars
can ripple through all the other bars in the dataset. Using functions like ta.valuewhen(),
ta.barssince() or ta.ema(), for example, will yield results that vary with early history.

Revision of historical data

Historical and realtime bars are built using two different data feeds supplied by exchanges/brokers:
historical data, and realtime data. When realtime bars elapse, exchanges/brokers sometimes make
what are usually small adjustments to bar prices, which are then written to their historical data.
When the chart is refreshed or the script is re-executed on those elapsed realtime bars, they will then
be built and calculated using the historical data, which will contain those usually small price
revisions, if any have been made.

Historical data may also be revised for other reasons, e.g., for stock splits.

Sessions
• Introduction
• Session strings

• Session string specifications
• Using session strings

• Session states
• Using sessions with `request.security()`

Introduction
Session information is usable in three different ways in Pine Script®:

1. Session strings containing from-to start times and day information that can be used in
functions such as time() and time_close() to detect when bars are in a particular time period,
with the option of limiting valid sessions to specific days. The input.session() function
provides a way to allow script users to define session values through a script’s “Inputs” tab

https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsession
https://www.tradingview.com/pine-script-reference/v5/#fun_time_close
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#using-sessions-with-request-security
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#session-states
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#using-session-strings
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#session-string-specifications
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#session-strings
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#introduction
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#id16
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dema
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dbarssince
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dvaluewhen

(see the Session input section for more information).
2. Session states built-in variables such as session.ismarket can identify which session a bar

belongs to.
3. When fetching data with request.security() you can also choose to return data from regular

sessions only or extended sessions. In this case, the definition of regular and extended
sessions is that of the exchange. It is part of the instrument’s properties — not user-defined,
as in point #1. This notion of regular and extended sessions is the same one used in the
chart’s interface, in the “Chart Settings/Symbol/Session” field, for example.

The following sections cover both methods of using session information in Pine Script®.

Note that:

• Not all user accounts on TradingView have access to extended session information.
• There is no special “session” type in Pine Script®. Instead, session strings are of “string”

type but must conform to the session string syntax.

Session strings

Session string specifications

Session strings used with time() and time_close() must have a specific format. Their syntax is:

<time_period>:<days>

Where:

• <time_period> uses times in “hhmm” format, with “hh” in 24-hour format, so 1700 for
5PM. The time periods are in the “hhmm-hhmm” format, and a comma can separate
multiple time periods to specify combinations of discrete periods.

For example, - <days> is a set of digits from 1 to 7 that specifies on which days the session is valid.
1 is Sunday, 7 is Saturday.

Note

The default days are: 1234567, which is different in Pine Script® v5 than in earlier versions
where 23456 (weekdays) is used. For v5 code to reproduce the behavior from previous versions, it
should explicitly mention weekdays, as in "0930-1700:23456".

These are examples of session strings:

"24x7"
A 7-day, 24-hour session beginning at midnight.

"0000-0000:1234567"
Equivalent to the previous example.

"0000-0000"
Equivalent to the previous two examples because the default days are 1234567.

"0000-0000:23456"
The same as the previous example, but only Monday to Friday.

"2000-1630:1234567"
An overnight session that begins at 20:00 and ends at 16:30 the next day. It is valid on all days
of the week.

"0930-1700:146"
A session that begins at 9:30 and ends at 17:00 on Sundays (1), Wednesdays (4), and Fridays

https://www.tradingview.com/pine-script-reference/v5/#fun_time_close
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#id3
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#id2
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#var_session%7Bdot%7Dismarket
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#pageinputs-sessioninput

(6).
"1700-1700:23456"

An overnight session. The Monday session starts Sunday at 17:00 and ends Monday at 17:00.
It is valid Monday through Friday.

"1000-1001:26"
A weird session that lasts only one minute on Mondays (2) and Fridays (6).

"0900-1600,1700-2000"
A session that begins at 9:00, breaks from 16:00 to 17:00, and continues until 20:00. Applies
to every day of the week.

Using session strings

Session properties defined with session strings are independent of the exchange-defined sessions
determining when an instrument can be traded. Programmers have complete liberty in creating
whatever session definitions suit their purpose, which is usually to detect when bars belong to
specific time periods. This is accomplished in Pine Script® by using one of the following two
signatures of the time() function:

time(timeframe, session, timezone) → series int
time(timeframe, session) → series int

Here, we use time() with a session argument to display the market’s opening high and low values
on an intraday chart:

//@version=5
indicator("Opening high/low", overlay = true)

sessionInput = input.session("0930-0935")

sessionBegins(sess) =>
 t = time("", sess)
 timeframe.isintraday and (not barstate.isfirst) and na(t[1]) and not na(t)

var float hi = na
var float lo = na
if sessionBegins(sessionInput)
 hi := high
 lo := low

plot(lo, "lo", color.fuchsia, 2, plot.style_circles)
plot(hi, "hi", color.lime, 2, plot.style_circles)

Note that:

• We use a session input to allow users to specify the time they want to detect. We are only
looking for the session’s beginning time on bars, so we use a five-minute gap between the
beginning and end time of our "0930-0935" default value.

• We create a sessionBegins() function to detect the beginning of a session. Its
time("", sess) call uses an empty string for the function’s timeframe parameter,
which means it uses the chart’s timeframe, whatever that is. The function returns true
when:

• The chart uses an intraday timeframe (seconds or minutes).

https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#id4

• The script isn’t on the chart’s first bar, which we ensure with (not
barstate.isfirst). This check prevents the code from always
detecting a session beginning on the first bar because na(t[1]) and
not na(t) is always true there.

• The time() call has returned na on the previous bar because it wasn’t in
the session’s time period, and it has returned a value that is not na on the
current bar, which means the bar is in the session’s time period.

Session states
Three built-in variables allow you to distinguish the type of session the current bar belongs to. They
are only helpful on intraday timeframes:

• session.ismarket returns true when the bar belongs to regular trading hours.
• session.ispremarket returns true when the bar belongs to the extended session preceding

regular trading hours.
• session.ispostmarket returns true when the bar belongs to the extended session following

regular trading hours.

Using sessions with `request.security()`
When your TradingView account provides access to extended sessions, you can choose to see their
bars with the “Settings/Symbol/Session” field. There are two types of sessions:

• regular (which does not include pre- and post-market data), and
• extended (which includes pre- and post-market data).

Scripts using the request.security() function to access data can return extended session data or not.
This is an example where only regular session data is fetched:

//@version=5
indicator("Example 1: Regular Session Data")
regularSessionData = request.security("NASDAQ:AAPL", timeframe.period, close,
barmerge.gaps_on)
plot(regularSessionData, style = plot.style_linebr)

If you want the request.security() call to return extended session data, you must first use the
ticker.new() function to build the first argument of the request.security() call:

//@version=5
indicator("Example 2: Extended Session Data")
t = ticker.new("NASDAQ", "AAPL", session.extended)
extendedSessionData = request.security(t, timeframe.period, close,
barmerge.gaps_on)
plot(extendedSessionData, style = plot.style_linebr)

Note that the previous chart’s gaps in the script’s plot are now filled. Also, keep in mind that our
example scripts do not produce the background coloring on the chart; it is due to the chart’s settings
showing extended hours.

https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#id6
https://www.tradingview.com/pine-script-reference/v5/#var_session%7Bdot%7Dispostmarket
https://www.tradingview.com/pine-script-reference/v5/#var_session%7Bdot%7Dispremarket
https://www.tradingview.com/pine-script-reference/v5/#var_session%7Bdot%7Dismarket
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#id5
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_time

The ticker.new() function has the following signature:

ticker.new(prefix, ticker, session, adjustment) → simple string

Where:

• prefix is the exchange prefix, e.g., "NASDAQ"
• ticker is a symbol name, e.g., "AAPL"
• session can be session.extended or session.regular. Note that this is not a

session string.
• adjustment adjusts prices using different criteria: adjustment.none,
adjustment.splits, adjustment.dividends.

Our first example could be rewritten as:

//@version=5
indicator("Example 1: Regular Session Data")
t = ticker.new("NASDAQ", "AAPL", session.regular)
regularSessionData = request.security(t, timeframe.period, close,
barmerge.gaps_on)
plot(regularSessionData, style = plot.style_linebr)

If you want to use the same session specifications used for the chart’s main symbol, omit the third
argument in ticker.new(); it is optional. If you want your code to declare your intention explicitly,
use the syminfo.session built-in variable. It holds the session type of the chart’s main symbol:

//@version=5
indicator("Example 1: Regular Session Data")
t = ticker.new("NASDAQ", "AAPL", syminfo.session)
regularSessionData = request.security(t, timeframe.period, close,
barmerge.gaps_on)
plot(regularSessionData, style = plot.style_linebr)

Strategies
• Introduction
• A simple strategy example
• Applying a strategy to a chart
• Strategy tester

• Overview
• Performance summary
• List of trades
• Properties

• Broker emulator
• Bar magnifier

• Orders and entries
• Order types

• Market orders
• Limit orders
• Stop and stop-limit orders

• Order placement commands
• `strategy.entry()`

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#strategy-entry
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#order-placement-commands
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#stop-and-stop-limit-orders
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#limit-orders
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#market-orders
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#order-types
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#orders-and-entries
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#bar-magnifier
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#broker-emulator
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#properties
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#list-of-trades
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#performance-summary
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#overview
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#strategy-tester
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#applying-a-strategy-to-a-chart
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#a-simple-strategy-example
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#introduction
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dsession
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Dnew

• `strategy.order()`
• `strategy.exit()`
• `strategy.close()` and `strategy.close_all()`
• `strategy.cancel()` and `strategy.cancel_all()`

• Position sizing
• Closing a market position
• OCA groups

• `strategy.oca.cancel`
• `strategy.oca.reduce`
• `strategy.oca.none`

• Currency
• Altering calculation behavior

• `calc_on_every_tick`
• `calc_on_order_fills`
• `process_orders_on_close`

• Simulating trading costs
• Commission
• Slippage and unfilled limits

• Risk management
• Margin
• Strategy Alerts
• Notes on testing strategies

• Backtesting and forward testing
• Lookahead bias
• Selection bias
• Overfitting

Introduction
Pine Script® strategies simulate the execution of trades on historical and real-time data to facilitate
the backtesting and forward testing of trading systems. They include many of the same capabilities
as Pine Script® indicators while providing the ability to place, modify, and cancel hypothetical
orders and analyze the results.

When a script uses the strategy() function for its declaration, it gains access to the strategy.*
namespace, where it can call functions and variables for simulating orders and accessing essential
strategy information. Additionally, the script will display information and simulated results
externally in the “Strategy Tester” tab.

A simple strategy example
The following script is a simple strategy that simulates the entry of long or short positions upon the
crossing of two moving averages:

//@version=5
strategy("test", overlay = true)

// Calculate two moving averages with different lengths.
float fastMA = ta.sma(close, 14)
float slowMA = ta.sma(close, 28)

// Enter a long position when `fastMA` crosses over `slowMA`.

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id2
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#overfitting
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#selection-bias
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#lookahead-bias
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#backtesting-and-forward-testing
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#notes-on-testing-strategies
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#strategy-alerts
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#margin
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#risk-management
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#slippage-and-unfilled-limits
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#commission
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#simulating-trading-costs
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#process-orders-on-close
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#calc-on-order-fills
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#calc-on-every-tick
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#altering-calculation-behavior
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#currency
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#strategy-oca-none
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#strategy-oca-reduce
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#strategy-oca-cancel
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#oca-groups
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#closing-a-market-position
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#position-sizing
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#strategy-cancel-and-strategy-cancel-all
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#strategy-close-and-strategy-close-all
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#strategy-exit
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#strategy-order

if ta.crossover(fastMA, slowMA)
 strategy.entry("buy", strategy.long)

// Enter a short position when `fastMA` crosses under `slowMA`.
if ta.crossunder(fastMA, slowMA)
 strategy.entry("sell", strategy.short)

// Plot the moving averages.
plot(fastMA, "Fast MA", color.aqua)
plot(slowMA, "Slow MA", color.orange)

Note that:
• The strategy("test" overlay = true) line declares that the script is a

strategy named “test” with visual outputs overlaid on the main chart pane.
• strategy.entry() is the command that the script uses to simulate “buy” and “sell” orders.

When the script places an order, it also plots the order id on the chart and an arrow to
indicate the direction.

• Two plot() functions plot the moving averages with two different colors for visual
reference.

Applying a strategy to a chart
To test a strategy, apply it to the chart. You can use a built-in strategy from the “Indicators &
Strategies” dialog box or write your own in the Pine Editor. Click “Add to chart” from the “Pine
Editor” tab to apply a script to the chart:

After a strategy script is compiled and applied to a chart, it will plot order marks on the main chart
pane and display simulated performance results in the “Strategy Tester” tab below:

Note

The results from a strategy applied to non-standard charts (Heikin Ashi, Renko, Line Break, Kagi,
Point & Figure, and Range) do not reflect actual market conditions by default. Strategy scripts will
use the synthetic price values from these charts during simulation, which often do not align with
actual market prices and will thus produce unrealistic backtest results. We therefore highly
recommend using standard chart types for backtesting strategies. Alternatively, on Heikin Ashi
charts, users can simulate orders using actual prices by enabling the “Fill orders using standard
OHLC” option in the Strategy properties or by using fill_orders_on_standard_ohlc =
true in the strategy() function call.

Strategy tester
The Strategy Tester module is available to all scripts declared with the strategy() function. Users
can access this module from the “Strategy Tester” tab below their charts, where they can
conveniently visualize their strategies and analyze hypothetical performance results.

Overview

The Overview tab of the Strategy Tester presents essential performance metrics and equity and

https://www.tradingview.com/support/solutions/43000681733
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id5
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id4
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/support/solutions/43000628599
https://www.tradingview.com/support/solutions/43000474007
https://www.tradingview.com/support/solutions/43000502276
https://www.tradingview.com/support/solutions/43000502272
https://www.tradingview.com/support/solutions/43000502273
https://www.tradingview.com/support/solutions/43000502284
https://www.tradingview.com/support/solutions/43000619436
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id3
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry

drawdown curves over a simulated sequence of trades, providing a quick look at strategy
performance without diving into granular detail. The chart in this section shows the strategy’s
equity curve as a baseline plot centered at the initial value, the buy and hold equity curve as a line
plot, and the drawdown curve as a histogram plot. Users can toggle these plots and scale them as
absolute values or percentages using the options below the chart.

Note that:
• The overview chart uses two scales; the left is for the equity curves, and the right is for

the drawdown curve.
• When a user clicks a point on these plots, this will direct the main chart view to the

point where the trade was closed.

Performance summary

The Performance Summary tab of the module presents a comprehensive overview of a strategy’s
performance metrics. It displays three columns: one for all trades, one for all longs, and one for all
shorts, to provide traders with more detailed insights on a strategy’s long, short, and overall
simulated trading performance.

List of trades

The List of Trades tab provides a granular look at the trades simulated by a strategy with essential
information, including the date and time of execution, the type of order used (entry or exit), the
number of contracts/shares/lots/units traded, and the price, as well as some key trade performance
metrics.

Note that:
• Users can navigate the times of specific trades on their charts by clicking on them in

this list.
• By clicking the “Trade #” field above the list, users can organize the trades in

ascending order starting from the first or descending order starting from the last.

Properties

The Properties tab provides detailed information about a strategy’s configuration and the dataset to
which it is applied. It includes the strategy’s date range, symbol information, script settings, and
strategy properties.

• Date Range - Includes the range of dates with simulated trades and the total available
backtesting range.

• Symbol Info - Contains the symbol name and broker/exchange, the chart’s timeframe and
type, the tick size, the point value for the chart, and the base currency.

• Strategy Inputs - Outlines the various parameters and variables used in the strategy script
available in the “Inputs” tab of the script settings.

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id8
https://www.tradingview.com/support/solutions/43000681737
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id7
https://www.tradingview.com/support/solutions/43000681683
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id6
https://www.tradingview.com/support/solutions/43000681734
https://www.tradingview.com/support/solutions/43000681736
https://www.tradingview.com/support/solutions/43000681735

• Strategy Properties - Provides an overview of the configuration of the trading strategy. It
includes essential details such as the initial capital, base currency, order size, margin,
pyramiding, commission, and slippage. Additionally, this section highlights any
modifications made to strategy calculation behavior.

Broker emulator
TradingView utilizes a broker emulator to simulate the performance of trading strategies. Unlike in
real-life trading, the emulator strictly uses available chart prices for order simulation. Consequently,
the simulation can only place historical trades after a bar closes, and it can only place real-time
trades on a new price tick. For more information on this behavior, please refer to the Pine Script®
Execution model.

Since the emulator can only use chart data, it makes assumptions about intrabar price movement. It
uses a bar’s open, high, and low prices to infer intrabar activity while calculating order fills with the
following logic:

• If the high price is closer to the opening price than the low price, it assumes that the price
moved in this order on the bar: open → high → low → close.

• If the low price is closer to the opening price than the high price, it assumes that the price
moved in this order on the bar: open → low → high → close.

• The broker emulator assumes no gaps exist between prices within bars; in the “eyes” of the
emulator, the full range of intrabar prices is available for order execution.

Bar magnifier

Premium account holders can override the broker emulator’s intrabar assumptions via the
use_bar_magnifier parameter of the strategy() function or the “Use bar magnifier” input in
the “Properties” tab of the script settings. The Bar Magnifier inspects data on timeframes smaller
than the chart’s to obtain more granular information about price action within a bar, thus allowing
more precise order fills during simulation.

To demonstrate, the following script places a “Buy” limit order at the entryPrice and an “Exit”
limit order at the exitPrice when the time value crosses the orderTime, and draws two
horizontal lines to visualize the order prices. The script also highlights the background using the
orderColor to indicate when the strategy placed the orders:

https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/support/solutions/43000669285
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id10
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id9

//@version=5
strategy("Bar Magnifier Demo", overlay = true, use_bar_magnifier = false)

//@variable The UNIX timestamp to place the order at.
int orderTime = timestamp("UTC", 2023, 3, 22, 18)

//@variable Returns `color.orange` when `time` crosses the `orderTime`, false
otherwise.
color orderColor = na

// Entry and exit prices.
float entryPrice = hl2 - (high - low)
float exitPrice = entryPrice + (high - low) * 0.25

// Entry and exit lines.
var line entryLine = na
var line exitLine = na

if ta.cross(time, orderTime)
 // Draw new entry and exit lines.
 entryLine := line.new(bar_index, entryPrice, bar_index + 1, entryPrice,
color = color.green, width = 2)
 exitLine := line.new(bar_index, exitPrice, bar_index + 1, exitPrice, color
= color.red, width = 2)

 // Update order highlight color.
 orderColor := color.new(color.orange, 80)

 // Place limit orders at the `entryPrice` and `exitPrice`.
 strategy.entry("Buy", strategy.long, limit = entryPrice)
 strategy.exit("Exit", "Buy", limit = exitPrice)

// Update lines while the position is open.
else if strategy.position_size > 0.0
 entryLine.set_x2(bar_index + 1)
 exitLine.set_x2(bar_index + 1)

bgcolor(orderColor)

As we see in the chart above, the broker emulator assumed that intrabar prices moved from open to
high, then high to low, then low to close on the bar the “Buy” order filled on, meaning the emulator
assumed that the “Exit” order couldn’t fill on the same bar. However, after including
use_bar_magnifier = true in the declaration statement, we see a different story:

Note

The maximum amount of intrabars that a script can request is 100,000. Some symbols with
lengthier history may not have full intrabar coverage for their beginning chart bars with this
limitation, meaning that simulated trades on those bars will not be affected by the bar magnifier.

Orders and entries
Just like in real-life trading, Pine strategies use orders to manage positions. In this context, an order
is a command to simulate a market action, and a trade is the result after the order fills. Thus, to
enter or exit positions using Pine, users must create orders with parameters that specify how they’ll
behave.

To take a closer look at how orders work and how they become trades, let’s write a simple strategy
script:

//@version=5
strategy("My strategy", overlay = true, margin_long = 100, margin_short = 100)

//@function Displays text passed to `txt` when called.
debugLabel(txt) =>
 label.new(
 bar_index, high, text = txt, color=color.lime, style =
label.style_label_lower_right,
 textcolor = color.black, size = size.large
)

longCondition = bar_index % 20 == 0 // true on every 20th bar
if (longCondition)
 debugLabel("Long entry order created")
 strategy.entry("My Long Entry Id", strategy.long)

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id11

strategy.close_all()

In this script, we’ve defined a longCondition that is true whenever the bar_index is
divisible by 20, i.e., every 20th bar. The strategy uses this condition within an if structure to
simulate an entry order with strategy.entry() and draws a label at the entry price with the user-
defined debugLabel() function. The script calls strategy.close_all() from the global scope to
simulate a market order that closes any open position. Let’s see what happens once we add the
script to our chart:

The blue arrows on the chart indicate entry locations, and the purple ones mark the points where the
strategy closed positions. Notice that the labels precede the actual entry point rather than occurring
on the same bar - this is orders in action. By default, Pine strategies wait for the next available price
tick before filling orders, as filling an order on the same tick isn’t realistic. Also, they recalculate on
the close of every historical bar, meaning the next available tick to fill an order at is the open of the
next bar in this case. As a result, by default, all orders are delayed by one chart bar.

It’s important to note that although the script calls strategy.close_all() from the global scope, forcing
execution on every bar, the function call does nothing if the strategy isn’t simulating an open
position. If there is an open position, the command issues a market order to close it, which executes
on the next available tick. For example, when the longCondition is true on bar 20, the strategy
places an entry order to fill at the next tick, which is at the open of bar 21. Once the script
recalculates its values on that bar’s close, the function places an order to close the position, which
fills at the open of bar 22.

Order types

Pine Script® strategies allow users to simulate different order types for their particular needs. The
main notable types are market, limit, stop, and stop-limit.

Market orders

Market orders are the most basic type of orders. They command a strategy to buy or sell a security
as soon as possible, regardless of the price. Consequently, they always execute on the next available
price tick. By default, all strategy.*() functions that generate orders specifically produce
market orders.

The following script simulates a long market order when the bar_index is divisible by 2 *
cycleLength. Otherwise, it simulates a short market order when the bar_index is divisible by
cycleLength, resulting in a strategy with alternating long and short trades once every
cycleLength bars:

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id13
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id12
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclose_all
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclose_all
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#op_if

//@version=5
strategy("Market order demo", overlay = true, margin_long = 100, margin_short =
100)

//@variable Number of bars between long and short entries.
cycleLength = input.int(10, "Cycle length")

//@function Displays text passed to `txt` when called.
debugLabel(txt, lblColor) => label.new(
 bar_index, high, text = txt, color = lblColor, textcolor = color.white,
 style = label.style_label_lower_right, size = size.large
)

//@variable Returns `true` every `2 * cycleLength` bars.
longCondition = bar_index % (2 * cycleLength) == 0
//@variable Returns `true` every `cycleLength` bars.
shortCondition = bar_index % cycleLength == 0

// Generate a long market order with a `color.green` label on `longCondition`.
if longCondition
 debugLabel("Long market order created", color.green)
 strategy.entry("My Long Entry Id", strategy.long)
// Otherwise, generate a short market order with a `color.red` label on
`shortCondition`.
else if shortCondition
 debugLabel("Short market order created", color.red)
 strategy.entry("My Short Entry Id", strategy.short)

Limit orders

Limit orders command a strategy to enter a position at a specific price or better (lower than
specified for long orders and higher for short ones). When the current market price is better than the
order command’s limit parameter, the order will fill without waiting for the market price to reach
the limit level.

To simulate limit orders in a script, pass a price value to an order placement command with a
limit parameter. The following example places a limit order 800 ticks below the bar close 100
bars before the last_bar_index:

//@version=5
strategy("Limit order demo", overlay = true, margin_long = 100, margin_short =
100)

//@function Displays text passed to `txt` and a horizontal line at `price` when
called.
debugLabel(price, txt) =>
 label.new(
 bar_index, price, text = txt, color = color.teal, textcolor =
color.white,
 style = label.style_label_lower_right, size = size.large
)
 line.new(
 bar_index, price, bar_index + 1, price, color = color.teal, extend =
extend.right,
 style = line.style_dashed
)

// Generate a long limit order with a label and line 100 bars before the
`last_bar_index`.
if last_bar_index - bar_index == 100
 limitPrice = close - syminfo.mintick * 800
 debugLabel(limitPrice, "Long Limit order created")
 strategy.entry("Long", strategy.long, limit = limitPrice)

Note how the script placed the label and started the line several bars before the trade. As long as the
price remained above the limitPrice value, the order could not fill. Once the market price
reached the limit, the strategy executed the trade mid-bar. If we had set the limitPrice to 800
ticks above the bar close rather than below, the order would fill immediately since the price is
already at a better value:

//@version=5
strategy("Limit order demo", overlay = true, margin_long = 100, margin_short =

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id14

100)

//@function Displays text passed to `txt` and a horizontal line at `price` when
called.
debugLabel(price, txt) =>
 label.new(
 bar_index, price, text = txt, color = color.teal, textcolor =
color.white,
 style = label.style_label_lower_right, size = size.large
)
 line.new(
 bar_index, price, bar_index + 1, price, color = color.teal, extend =
extend.right,
 style = line.style_dashed
)

// Generate a long limit order with a label and line 100 bars before the
`last_bar_index`.
if last_bar_index - bar_index == 100
 limitPrice = close + syminfo.mintick * 800
 debugLabel(limitPrice, "Long Limit order created")
 strategy.entry("Long", strategy.long, limit = limitPrice)

Stop and stop-limit orders

Stop orders command a strategy to simulate another order after price reaches the specified stop
price or a worse value (higher than specified for long orders and lower for short ones). They are
essentially the opposite of limit orders. When the current market price is worse than the stop
parameter, the strategy will trigger the subsequent order without waiting for the current price to
reach the stop level. If the order placement command includes a limit argument, the subsequent
order will be a limit order at the specified value. Otherwise, it will be a market order.

The script below places a stop order 800 ticks above the close 100 bars ago. In this example, the
strategy entered a long position when the market price crossed the stop price some bars after it
placed the order. Notice that the initial price at the time of the order was better than the one passed
to stop. An equivalent limit order would have filled on the following chart bar:

//@version=5
strategy("Stop order demo", overlay = true, margin_long = 100, margin_short =
100)

//@function Displays text passed to `txt` when called and shows the `price`
level on the chart.
debugLabel(price, txt) =>
 label.new(
 bar_index, high, text = txt, color = color.teal, textcolor =
color.white,
 style = label.style_label_lower_right, size = size.large
)
 line.new(bar_index, high, bar_index, price, style = line.style_dotted, color
= color.teal)
 line.new(
 bar_index, price, bar_index + 1, price, color = color.teal, extend =
extend.right,
 style = line.style_dashed
)

// Generate a long stop order with a label and lines 100 bars before the last

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id15

bar.
if last_bar_index - bar_index == 100
 stopPrice = close + syminfo.mintick * 800
 debugLabel(stopPrice, "Long Stop order created")
 strategy.entry("Long", strategy.long, stop = stopPrice)

Order placement commands that use both limit and stop arguments produce stop-limit orders.
This order type waits for the price to cross the stop level, then places a limit order at the specified
limit price.

Let’s modify our previous script to simulate and visualize a stop-limit order. In this example, we use
the low value from 100 bars ago as the limit price in the entry command. This script also
displays a label and price level to indicate when the strategy crosses the stopPrice, i.e., when
the strategy activates the limit order. Notice how the market price initially reaches the limit level,
but the strategy doesn’t simulate a trade because the price must cross the stopPrice to place the
pending limit order at the limitPrice:

//@version=5
strategy("Stop-Limit order demo", overlay = true, margin_long = 100,
margin_short = 100)

//@function Displays text passed to `txt` when called and shows the `price`
level on the chart.
debugLabel(price, txt, lblColor, lineWidth = 1) =>
 label.new(
 bar_index, high, text = txt, color = lblColor, textcolor = color.white,
 style = label.style_label_lower_right, size = size.large
)
 line.new(bar_index, close, bar_index, price, style = line.style_dotted,
color = lblColor, width = lineWidth)
 line.new(
 bar_index, price, bar_index + 1, price, color = lblColor, extend =
extend.right,
 style = line.style_dashed, width = lineWidth
)

var float stopPrice = na
var float limitPrice = na

// Generate a long stop-limit order with a label and lines 100 bars before the
last bar.
if last_bar_index - bar_index == 100
 stopPrice := close + syminfo.mintick * 800
 limitPrice := low
 debugLabel(limitPrice, "", color.gray)
 debugLabel(stopPrice, "Long Stop-Limit order created", color.teal)
 strategy.entry("Long", strategy.long, stop = stopPrice, limit = limitPrice)

// Draw a line and label once the strategy activates the limit order.
if high >= stopPrice
 debugLabel(limitPrice, "Limit order activated", color.green, 2)
 stopPrice := na

Order placement commands

Pine Script® strategies feature several functions to simulate the placement of orders, known as
order placement commands. Each command serves a unique purpose and behaves differently from

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id16

the others.

`strategy.entry()`

This command simulates entry orders. By default, strategies place market orders when calling this
function, but they can also create stop, limit, and stop-limit orders when utilizing the stop and
limit parameters.

To simplify opening positions, strategy.entry() features several unique behaviors. One such behavior
is that this command can reverse an open market position without additional function calls. When
an order placed using strategy.entry() fills, the function will automatically calculate the amount the
strategy needs to close the open market position and trade qty contracts/shares/lots/units in the
opposite direction by default. For example, if a strategy has an open position of 15 shares in the
strategy.long direction and calls strategy.entry() to place a market order in the strategy.short
direction, the amount the strategy will trade to place the order is 15 shares plus the qty of the new
short order.

The example below demonstrates a strategy that uses only strategy.entry() calls to place entry
orders. It creates a long market order with a qty value of 15 shares once every 100 bars and a short
market order with a qty of 5 once every 25 bars. The script highlights the background blue and red
for occurrences of the respective buyCondition and sellCondition:

//@version=5
strategy("Entry demo", "test", overlay = true)

//@variable Is `true` on every 100th bar.
buyCondition = bar_index % 100 == 0
//@variable Is `true` on every 25th bar except for those that are divisible by
100.
sellCondition = bar_index % 25 == 0 and not buyCondition

if buyCondition
 strategy.entry("buy", strategy.long, qty = 15)
if sellCondition
 strategy.entry("sell", strategy.short, qty = 5)

bgcolor(buyCondition ? color.new(color.blue, 90) : na)
bgcolor(sellCondition ? color.new(color.red, 90) : na)

As we see in the chart above, the order marks show that the strategy traded 20 shares on each order
fill rather than 15 and 5. Since strategy.entry() automatically reverses positions, unless otherwise
specified via the strategy.risk.allow_entry_in() function, it adds the open position size (15 for long
entries) to the new order’s size (5 for short entries) when it changes the direction, resulting in a
traded quantity of 20 shares.

Notice that in the above example, although the sellCondition occurs three times before
another buyCondition, the strategy only places a “sell” order on the first occurrence. Another
unique behavior of the strategy.entry() command is that it’s affected by a script’s pyramiding
setting. Pyramiding specifies the number of consecutive orders the strategy can fill in the same
direction. Its value is 1 by default, meaning the strategy only allows one consecutive order to fill in
either direction. Users can set the strategy pyramiding values via the pyramiding parameter of
the strategy() function call or the “Pyramiding” input in the “Properties” tab of the script settings.

If we add pyramiding = 3 to our previous script’s declaration statement, the strategy will allow
up to three consecutive trades in the same direction, meaning it can simulate new market orders on

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Drisk%7Bdot%7Dallow_entry_in
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dshort
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dlong
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id17

each occurrence of sellCondition:

`strategy.order()`

This command simulates a basic order. Unlike most order placement commands, which contain
internal logic to simplify interfacing with strategies, strategy.order() uses the specified parameters
without accounting for most additional strategy settings. Orders placed by strategy.order() can open
new positions and modify or close existing ones.

The following script uses only strategy.order() calls to create and modify entries. The strategy
simulates a long market order for 15 units every 100 bars, then three short orders for five units
every 25 bars. The script highlights the background blue and red to indicate when the strategy
simulates “buy” and “sell” orders:

//@version=5
strategy("Order demo", "test", overlay = true)

//@variable Is `true` on every 100th bar.
buyCond = bar_index % 100 == 0
//@variable Is `true` on every 25th bar except for those that are divisible by
100.
sellCond = bar_index % 25 == 0 and not buyCond

if buyCond
 strategy.order("buy", strategy.long, qty = 15) // Enter a long position of
15 units.
if sellCond
 strategy.order("sell", strategy.short, qty = 5) // Exit 5 units from the
long position.

bgcolor(buyCond ? color.new(color.blue, 90) : na)
bgcolor(sellCond ? color.new(color.red, 90) : na)

This particular strategy will never simulate a short position, as unlike strategy.entry(),
strategy.order() does not automatically reverse positions. When using this command, the resulting
market position is the net sum of the current market position and the filled order quantity. After the
strategy fills the “buy” order for 15 units, it executes three “sell” orders that reduce the open
position by five units each, and 15 - 5 * 3 = 0. The same script would behave differently using
strategy.entry(), as per the example shown in the section above.

`strategy.exit()`

This command simulates exit orders. It’s unique in that it allows a strategy to exit a market position
or form multiple exits in the form of stop-loss, take-profit, and trailing stop orders via the loss,
stop, profit, limit, and trail_* parameters.

The most basic use of the strategy.exit() command is the creation of levels where the strategy will
exit a position due to losing too much money (stop-loss), earning enough money (take-profit), or
both (bracket).

The stop-loss and take-profit functionalities of this command are associated with two parameters.
The function’s loss and profit parameters specify stop-loss and take-profit values as a defined
number of ticks away from the entry order’s price, while its stop and limit parameters provide

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id19
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#pagestrategies-ordersandentries-orderplacementcommands-strategyentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dorder
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dorder
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dorder
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dorder
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id18

specific stop-loss and take-profit price values. The absolute parameters in the function call
supersede the relative ones. If a strategy.exit() call contains profit and limit arguments, the
command will prioritize the limit value and ignore the profit value. Likewise, it will only
consider the stop value when the function call contains stop and loss arguments.

Note

Despite sharing the same names with parameters from strategy.entry() and strategy.order()
commands, the limit and stop parameters work differently in strategy.exit(). In the first case,
using limit and stop in the command will create a single stop-limit order that opens a limit
order after crossing the stop price. In the second case, the command will create a separate limit and
stop order to exit from an open position.

All exit orders from strategy.exit() with a from_entry argument are bound to the id of a
corresponding entry order; strategies cannot simulate exit orders when there is no open market
position or active entry order associated with a from_entry ID.

The following strategy places a “buy” entry order via strategy.entry() and a stop-loss and take-profit
order via the strategy.exit() command every 100 bars. Notice that the script calls strategy.exit()
twice. The “exit1” command references a “buy1” entry order, and “exit2” references the “buy”
order. The strategy will only simulate exit orders from “exit2” because “exit1” references an order
ID that doesn’t exist:

//@version=5
strategy("Exit demo", "test", overlay = true)

//@variable Is `true` on every 100th bar.
buyCondition = bar_index % 100 == 0

//@variable Stop-loss price for exit commands.
var float stopLoss = na
//@variable Take-profit price for exit commands.
var float takeProfit = na

// Place orders upon `buyCondition`.
if buyCondition
 if strategy.position_size == 0.0
 stopLoss := close * 0.99
 takeProfit := close * 1.01
 strategy.entry("buy", strategy.long)
 strategy.exit("exit1", "buy1", stop = stopLoss, limit = takeProfit) // Does
nothing. "buy1" order doesn't exist.
 strategy.exit("exit2", "buy", stop = stopLoss, limit = takeProfit)

// Set `stopLoss` and `takeProfit` to `na` when price touches either, i.e., when
the strategy simulates an exit.
if low <= stopLoss or high >= takeProfit
 stopLoss := na
 takeProfit := na

plot(stopLoss, "SL", color.red, style = plot.style_circles)
plot(takeProfit, "TP", color.green, style = plot.style_circles)

Note that:
• Limit and stop orders from each exit command do not necessarily fill at the specified

prices. Strategies can fill limit orders at better prices and stop orders at worse prices,
depending on the range of values available to the broker emulator.

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dorder
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit

If a user does not provide a from_entry argument in the strategy.exit() call, the function will
create exit orders for each open entry.

In this example, the strategy creates “buy1” and “buy2” entry orders and calls strategy.exit()
without a from_entry argument every 100 bars. As we can see from the order marks on the
chart, once the market price reaches the stopLoss or takeProfit values, the strategy fills an
exit order for both “buy1” and “buy2” entries:

//@version=5
strategy("Exit all demo", "test", overlay = true, pyramiding = 2)

//@variable Is `true` on every 100th bar.
buyCondition = bar_index % 100 == 0

//@variable Stop-loss price for exit commands.
var float stopLoss = na
//@variable Take-profit price for exit commands.
var float takeProfit = na

// Place orders upon `buyCondition`.
if buyCondition
 if strategy.position_size == 0.0
 stopLoss := close * 0.99
 takeProfit := close * 1.01
 strategy.entry("buy1", strategy.long)
 strategy.entry("buy2", strategy.long)
 strategy.exit("exit", stop = stopLoss, limit = takeProfit) // Places orders
to exit all open entries.

// Set `stopLoss` and `takeProfit` to `na` when price touches either, i.e., when
the strategy simulates an exit.
if low <= stopLoss or high >= takeProfit
 stopLoss := na
 takeProfit := na

plot(stopLoss, "SL", color.red, style = plot.style_circles)
plot(takeProfit, "TP", color.green, style = plot.style_circles)

It is possible for a strategy to exit from the same entry ID more than once, which facilitates the
formation of multi-level exit strategies. When performing multiple exit commands, each order’s
quantity must be a portion of the traded quantity, with their sum not exceeding the open position. If
the qty of the function is less than the size of the current market position, the strategy will simulate
a partial exit. If the qty value exceeds the open position quantity, it will reduce the order since it
cannot fill more contracts/shares/lots/units than the open position.

In the example below, we’ve modified our previous “Exit demo” script to simulate two stop-loss
and take-profit orders per entry. The strategy places a “buy” order with a qty of two shares, “exit1”
stop-loss and take-profit orders with a qty of one share, and “exit2” stop-loss and take profit orders
with a qty of three shares:

//@version=5
strategy("Multiple exit demo", "test", overlay = true)

//@variable Is `true` on every 100th bar.
buyCondition = bar_index % 100 == 0

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit

//@variable Stop-loss price for "exit1" commands.
var float stopLoss1 = na
//@variable Stop-loss price for "exit2" commands.
var float stopLoss2 = na
//@variable Take-profit price for "exit1" commands.
var float takeProfit1 = na
//@variable Take-profit price for "exit2" commands.
var float takeProfit2 = na

// Place orders upon `buyCondition`.
if buyCondition
 if strategy.position_size == 0.0
 stopLoss1 := close * 0.99
 stopLoss2 := close * 0.98
 takeProfit1 := close * 1.01
 takeProfit2 := close * 1.02
 strategy.entry("buy", strategy.long, qty = 2)
 strategy.exit("exit1", "buy", stop = stopLoss1, limit = takeProfit1, qty =
1)
 strategy.exit("exit2", "buy", stop = stopLoss2, limit = takeProfit2, qty =
3)

// Set `stopLoss1` and `takeProfit1` to `na` when price touches either.
if low <= stopLoss1 or high >= takeProfit1
 stopLoss1 := na
 takeProfit1 := na
// Set `stopLoss2` and `takeProfit2` to `na` when price touches either.
if low <= stopLoss2 or high >= takeProfit2
 stopLoss2 := na
 takeProfit2 := na

plot(stopLoss1, "SL1", color.red, style = plot.style_circles)
plot(stopLoss2, "SL2", color.red, style = plot.style_circles)
plot(takeProfit1, "TP1", color.green, style = plot.style_circles)
plot(takeProfit2, "TP2", color.green, style = plot.style_circles)

As we can see from the order marks on the chart, the strategy filled “exit2” orders despite the
specified qty value exceeding the traded amount. Rather than using this quantity, the script
reduced the orders’ sizes to match the remaining position.

Note that:
• All orders generated from a strategy.exit() call belong to the same strategy.oca.reduce

group, meaning that when either order fills, the strategy reduces all others to match the
open position.

It’s important to note that orders produced by this command reserve a portion of the open market
position to exit. strategy.exit() cannot place an order to exit a portion of the position already
reserved for exit by another exit command.

The following script simulates a “buy” market order for 20 shares 100 bars ago with “limit” and
“stop” orders of 19 and 20 shares respectively. As we see on the chart, the strategy executed the
“stop” order first. However, the traded quantity was only one share. Since the script placed the
“limit” order first, the strategy reserved its qty (19 shares) to close the open position, leaving only
one share to be closed by the “stop” order:

//@version=5
strategy("Reserved exit demo", "test", overlay = true)

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#pagestrategies-ocagroups-strategyocareduce
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit

//@variable "stop" exit order price.
var float stop = na
//@variable "limit" exit order price
var float limit = na
//@variable Is `true` 100 bars before the `last_bar_index`.
longCondition = last_bar_index - bar_index == 100

if longCondition
 stop := close * 0.99
 limit := close * 1.01
 strategy.entry("buy", strategy.long, 20)
 strategy.exit("limit", limit = limit, qty = 19)
 strategy.exit("stop", stop = stop, qty = 20)

bool showPlot = strategy.position_size != 0
plot(showPlot ? stop : na, "Stop", color.red, 2, plot.style_linebr)
plot(showPlot ? limit : na, "Limit 1", color.green, 2, plot.style_linebr)

Another key feature of the strategy.exit() function is that it can create trailing stops, i.e., stop-loss
orders that trail behind the market price by a specified amount whenever the price moves to a better
value in the favorable direction. These orders have two components: the activation level and the
trail offset. The activation level is the value the market price must cross to activate the trailing stop
calculation, expressed in ticks via the trail_points parameter or as a price value via the
trail_price parameter. If an exit call contains both arguments, the trail_price argument
takes precedence. The trail offset is the distance the stop will follow behind the market price,
expressed in ticks via the trail_offset parameter. For strategy.exit() to create and activate
trailing stops, the function call must contain trail_offset and either trail_price or
trail_points arguments.

The example below shows a trailing stop in action and visualizes its behavior. The strategy
simulates a long entry order on the bar 100 bars before the last bar on the chart, then a trailing stop
on the next bar. The script has two inputs: one controls the activation level offset (i.e., the amount
past the entry price required to activate the stop), and the other controls the trail offset (i.e., the
distance to follow behind the market price when it moves to a better value in the desired direction).

The green dashed line on the chart shows the level the market price must cross to trigger the trailing
stop order. After the price crosses this level, the script plots a blue line to signify the trailing stop.
When the price rises to a new high value, which is favorable for the strategy since it means the
position’s value is increasing, the stop also rises to maintain a distance of
trailingStopOffset ticks behind the current price. When the price decreases or doesn’t reach
a new high point, the stop value stays the same. Eventually, the price crosses below the stop,
triggering the exit:

//@version=5
strategy("Trailing stop order demo", overlay = true, margin_long = 100,
margin_short = 100)

//@variable Offset used to determine how far above the entry price (in ticks)
the activation level will be located.
activationLevelOffset = input(1000, "Activation Level Offset (in ticks)")
//@variable Offset used to determine how far below the high price (in ticks) the
trailing stop will trail the chart.
trailingStopOffset = input(2000, "Trailing Stop Offset (in ticks)")

//@function Displays text passed to `txt` when called and shows the `price`

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit

level on the chart.
debugLabel(price, txt, lblColor, hasLine = false) =>
 label.new(
 bar_index, price, text = txt, color = lblColor, textcolor =
color.white,
 style = label.style_label_lower_right, size = size.large
)
 if hasLine
 line.new(
 bar_index, price, bar_index + 1, price, color = lblColor, extend =
extend.right,
 style = line.style_dashed
)

//@variable The price at which the trailing stop activation level is located.
var float trailPriceActivationLevel = na
//@variable The price at which the trailing stop itself is located.
var float trailingStop = na
//@variable Caclulates the value that Trailing Stop would have if it were active
at the moment.
theoreticalStopPrice = high - trailingStopOffset * syminfo.mintick

// Generate a long market order to enter 100 bars before the last bar.
if last_bar_index - bar_index == 100
 strategy.entry("Long", strategy.long)

// Generate a trailing stop 99 bars before the last bar.
if last_bar_index - bar_index == 99
 trailPriceActivationLevel := open + syminfo.mintick * activationLevelOffset
 strategy.exit(
 "Trailing Stop", from_entry = "Long", trail_price =
trailPriceActivationLevel,
 trail_offset = trailingStopOffset
)
 debugLabel(trailPriceActivationLevel, "Trailing Stop Activation Level",
color.green, true)

// Visualize the trailing stop mechanic in action.
// If there is an open trade, check whether the Activation Level has been
achieved.
// If it has been achieved, track the trailing stop by assigning its value to a
variable.
if strategy.opentrades == 1
 if na(trailingStop) and high > trailPriceActivationLevel
 debugLabel(trailPriceActivationLevel, "Activation level crossed",
color.green)
 trailingStop := theoreticalStopPrice
 debugLabel(trailingStop, "Trailing Stop Activated", color.blue)

 else if theoreticalStopPrice > trailingStop
 trailingStop := theoreticalStopPrice

// Visualize the movement of the trailing stop.
plot(trailingStop, "Trailing Stop")

`strategy.close()` and `strategy.close_all()`

These commands simulate exit positions using market orders. The functions close trades upon being
called rather than at a specific price.

The example below demonstrates a simple strategy that places a “buy” order via strategy.entry()
once every 50 bars that it closes with a market order using strategy.close() 25 bars afterward:

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclose
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id20

//@version=5
strategy("Close demo", "test", overlay = true)

//@variable Is `true` on every 50th bar.
buyCond = bar_index % 50 == 0
//@variable Is `true` on every 25th bar except for those that are divisible by
50.
sellCond = bar_index % 25 == 0 and not buyCond

if buyCond
 strategy.entry("buy", strategy.long)
if sellCond
 strategy.close("buy")

bgcolor(buyCond ? color.new(color.blue, 90) : na)
bgcolor(sellCond ? color.new(color.red, 90) : na)

Unlike most other order placement commands, the id parameter of strategy.close() references an
existing entry ID to close. If the specified id does not exist, the command will not execute an order.
If a position was formed from multiple entries with the same ID, the command will exit all entries
simultaneously.

To demonstrate, the following script places a “buy” order once every 25 bars. The script closes all
“buy” entries once every 100 bars. We’ve included pyramiding = 3 in the strategy()
declaration statement to allow the strategy to simulate up to three orders in the same direction:

//@version=5
strategy("Multiple close demo", "test", overlay = true, pyramiding = 3)

//@variable Is `true` on every 100th bar.
sellCond = bar_index % 100 == 0
//@variable Is `true` on every 25th bar except for those that are divisible by
100.
buyCond = bar_index % 25 == 0 and not sellCond

if buyCond
 strategy.entry("buy", strategy.long)
if sellCond
 strategy.close("buy")

bgcolor(buyCond ? color.new(color.blue, 90) : na)
bgcolor(sellCond ? color.new(color.red, 90) : na)

For cases where a script has multiple entries with different IDs, the strategy.close_all() command
can come in handy since it closes all entries, irrespective of their IDs.

The script below places “A”, “B”, and “C” entry orders sequentially based on the number of open
trades, then closes all of them with a single market order:

//@version=5
strategy("Close multiple ID demo", "test", overlay = true, pyramiding = 3)

switch strategy.opentrades
 0 => strategy.entry("A", strategy.long)
 1 => strategy.entry("B", strategy.long)
 2 => strategy.entry("C", strategy.long)
 3 => strategy.close_all()

`strategy.cancel()` and `strategy.cancel_all()`

These commands allow a strategy to cancel pending orders, i.e., those generated by strategy.exit()
or by strategy.order() or strategy.entry() when they use limit or stop arguments.

The following strategy simulates a “buy” limit order 500 ticks below the closing price 100 bars ago,
then cancels the order on the next bar. The script draws a horizontal line at the limitPrice and
colors the background green and orange to indicate when the limit order is placed and canceled
respectively. As we can see, nothing happened once the market price crossed the limitPrice
because the strategy already canceled the order:

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dorder
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id21
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclose_all
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclose

//@version=5
strategy("Cancel demo", "test", overlay = true)

//@variable Draws a horizontal line at the `limit` price of the "buy" order.
var line limitLine = na

//@variable Returns `color.green` when the strategy places the "buy" order,
`color.orange` when it cancels the order.
color bgColor = na

if last_bar_index - bar_index == 100
 float limitPrice = close - syminfo.mintick * 500
 strategy.entry("buy", strategy.long, limit = limitPrice)
 limitLine := line.new(bar_index, limitPrice, bar_index + 1, limitPrice,
extend = extend.right)
 bgColor := color.new(color.green, 50)

if last_bar_index - bar_index == 99
 strategy.cancel("buy")
 bgColor := color.new(color.orange, 50)

bgcolor(bgColor)

As with strategy.close(), the id parameter of strategy.cancel() refers to the ID of an existing entry.
This command will do nothing if the id parameter references an ID that doesn’t exist. When there
are multiple pending orders with the same ID, this command will cancel all of them at once.

In this example, we’ve modified the previous script to place a “buy” limit order on three
consecutive bars starting from 100 bars ago. The strategy cancels all of them after the bar_index
is 97 bars away from the most recent bar, resulting in it doing nothing when the price crosses any of
the lines:

//@version=5
strategy("Multiple cancel demo", "test", overlay = true, pyramiding = 3)

//@variable Draws a horizontal line at the `limit` price of the "buy" order.
var line limitLine = na

//@variable Returns `color.green` when the strategy places the "buy" order,
`color.orange` when it cancels the order.
color bgColor = na

if last_bar_index - bar_index <= 100 and last_bar_index - bar_index >= 98
 float limitPrice = close - syminfo.mintick * 500
 strategy.entry("buy", strategy.long, limit = limitPrice)
 limitLine := line.new(bar_index, limitPrice, bar_index + 1, limitPrice,
extend = extend.right)
 bgColor := color.new(color.green, 50)

if last_bar_index - bar_index == 97
 strategy.cancel("buy")
 bgColor := color.new(color.orange, 50)

bgcolor(bgColor)

Note that:
• We added pyramiding = 3 to the script’s declaration statement to allow three

strategy.entry() orders to fill. Alternatively, the script would achieve the same output

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dcancel
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclose

by using strategy.order() since it isn’t sensitive to the pyramiding setting.

It’s important to note that neither strategy.cancel() nor strategy.cancel_all() can cancel market
orders, as the strategy executes them immediately upon the next tick. Strategies cannot cancel
orders after they’ve been filled. To close an open position, use strategy.close() or
strategy.close_all().

This example simulates a “buy” market order 100 bars ago, then attempts to cancel all pending
orders on the next bar. Since the strategy already filled the “buy” order, the strategy.cancel_all()
command does nothing in this case, as there are no pending orders to cancel:

//@version=5
strategy("Cancel market demo", "test", overlay = true)

//@variable Returns `color.green` when the strategy places the "buy" order,
`color.orange` when it tries to cancel.
color bgColor = na

if last_bar_index - bar_index == 100
 strategy.entry("buy", strategy.long)
 bgColor := color.new(color.green, 50)

if last_bar_index - bar_index == 99
 strategy.cancel_all()
 bgColor := color.new(color.orange, 50)

bgcolor(bgColor)

Position sizing
Pine Script® strategies feature two ways to control the sizes of simulated trades:

• Set a default fixed quantity type and value for all orders using the default_qty_type
and default_qty_value arguments in the strategy() function, which also sets the
default values in the “Properties” tab of the script settings.

• Specify the qty argument when calling strategy.entry(). When a user supplies this argument
to the function, the script ignores the strategy’s default quantity value and type.

The following example simulates “Buy” orders of longAmount size whenever the low price
equals the lowest value, and “Sell” orders of shortAmount size when the high price equals
the highest value:

//@version=5
strategy("Buy low, sell high", overlay = true, default_qty_type = strategy.cash,
default_qty_value = 5000)

int length = input.int(20, "Length")
float longAmount = input.float(4.0, "Long Amount")
float shortAmount = input.float(2.0, "Short Amount")

float highest = ta.highest(length)
float lowest = ta.lowest(length)

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id22
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dcancel_all
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclose_all
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclose
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dcancel_all
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dcancel
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dorder

switch
 low == lowest => strategy.entry("Buy", strategy.long, longAmount)
 high == highest => strategy.entry("Sell", strategy.short, shortAmount)

Notice that in the above example, although we’ve specified the default_qty_type and
default_qty_value arguments in the declaration statement, the script does not use these
defaults for the simulated orders. Instead, it sizes them as a longAmount and shortAmount of
units. If we want the script to use the default type and value, we must remove the qty specification
from the strategy.entry() calls:

//@version=5
strategy("Buy low, sell high", overlay = true, default_qty_type = strategy.cash,
default_qty_value = 5000)

int length = input.int(20, "Length")

float highest = ta.highest(length)
float lowest = ta.lowest(length)

switch
 low == lowest => strategy.entry("Buy", strategy.long)
 high == highest => strategy.entry("Sell", strategy.short)

Closing a market position
Although it is possible to simulate an exit from a specific entry order shown in the List of Trades
tab of the Strategy Tester module, all orders are linked according to FIFO (first in, first out) rules. If
the user does not specify the from_entry parameter of a strategy.exit() call, the strategy will exit
the open market position starting from the first entry order that opened it.

The following example simulates two orders sequentially: “Buy1” at the market price for the last
100 bars and “Buy2” once the position size matches the size of “Buy1”. The strategy only places an
exit order when the positionSize is 15 units. The script does not supply a from_entry
argument to the strategy.exit() command, so the strategy places exit orders for all open positions
each time it calls the function, starting with the first. It plots the positionSize in a separate
pane for visual reference:

//@version=5
strategy("Exit Demo", pyramiding = 2)

float positionSize = strategy.position_size

if positionSize == 0 and last_bar_index - bar_index <= 100
 strategy.entry("Buy1", strategy.long, 5)
else if positionSize == 5
 strategy.entry("Buy2", strategy.long, 10)
else if positionSize == 15
 strategy.exit("bracket", loss = 10, profit = 10)

plot(positionSize == 0 ? na : positionSize, "Position Size", color.lime, 4,
plot.style_histogram)

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#pagestrategies-strategytester
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id23
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry

Note that:
• We included pyramiding = 2 in our script’s declaration statement to allow it to

simulate two consecutive orders in the same direction.

Suppose we wanted to exit “Buy2” before “Buy1”. Let’s see what happens if we instruct the
strategy to close “Buy2” before “Buy1” when it fills both orders:

//@version=5
strategy("Exit Demo", pyramiding = 2)

float positionSize = strategy.position_size

if positionSize == 0 and last_bar_index - bar_index <= 100
 strategy.entry("Buy1", strategy.long, 5)
else if positionSize == 5
 strategy.entry("Buy2", strategy.long, 10)
else if positionSize == 15
 strategy.close("Buy2")
 strategy.exit("bracket", "Buy1", loss = 10, profit = 10)

plot(positionSize == 0 ? na : positionSize, "Position Size", color.lime, 4,
plot.style_histogram)

As we can see in the Strategy Tester’s “List of Trades” tab, rather than closing the “Buy2” position
with strategy.close(), it closes the quantity of “Buy1” first, which is half the quantity of the close
order, then closes half of the “Buy2” position, as the broker emulator follows FIFO rules by default.
Users can change this behavior by specifying close_entries_rule = "ANY" in the
strategy() function.

OCA groups
One-Cancels-All (OCA) groups allow a strategy to fully or partially cancel other orders upon the
execution of order placement commands, including strategy.entry() and strategy.order(), with the
same oca_name, depending on the oca_type that the user provides in the function call.

`strategy.oca.cancel`

The strategy.oca.cancel OCA type cancels all orders with the same oca_name upon the fill or
partial fill of an order from the group.

For example, the following strategy executes orders upon ma1 crossing ma2. When the
strategy.position_size is 0, it places long and short stop orders on the high and low of the bar.
Otherwise, it calls strategy.close_all() to close all open positions with a market order. Depending on
the price action, the strategy may fill both orders before issuing a close order. Additionally, if the
broker emulator’s intrabar assumption supports it, both orders may fill on the same bar. The
strategy.close_all() command does nothing in such cases, as the script cannot invoke the action until
after already executing both orders:

//@version=5
strategy("OCA Cancel Demo", overlay=true)

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclose_all
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclose_all
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dposition_size
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Doca%7Bdot%7Dcancel
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id25
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dorder
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id24
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclose

float ma1 = ta.sma(close, 5)
float ma2 = ta.sma(close, 9)

if ta.cross(ma1, ma2)
 if strategy.position_size == 0
 strategy.order("Long", strategy.long, stop = high)
 strategy.order("Short", strategy.short, stop = low)
 else
 strategy.close_all()

plot(ma1, "Fast MA", color.aqua)
plot(ma2, "Slow MA", color.orange)

To eliminate scenarios where the strategy fills long and short orders before a close order, we can
instruct it to cancel one order after it executes the other. In this example, we’ve set the oca_name
for both strategy.order() commands to “Entry” and their oca_type to
strategy.oca.cancel:

//@version=5
strategy("OCA Cancel Demo", overlay=true)

float ma1 = ta.sma(close, 5)
float ma2 = ta.sma(close, 9)

if ta.cross(ma1, ma2)
 if strategy.position_size == 0
 strategy.order("Long", strategy.long, stop = high, oca_name = "Entry",
oca_type = strategy.oca.cancel)
 strategy.order("Short", strategy.short, stop = low, oca_name = "Entry",
oca_type = strategy.oca.cancel)
 else
 strategy.close_all()

plot(ma1, "Fast MA", color.aqua)
plot(ma2, "Slow MA", color.orange)

`strategy.oca.reduce`

The strategy.oca.reduce OCA type does not cancel orders. Instead, it reduces the size of orders with
the same oca_name upon each new fill by the number of closed contracts/shares/lots/units, which
is particularly useful for exit strategies.

The following example demonstrates an attempt at a long-only exit strategy that generates a stop-
loss order and two take-profit orders for each new entry. Upon the crossover of two moving
averages, it simulates a “Long” entry order using strategy.entry() with a qty of 6 units, then
simulates stop/limit orders for 6, 3, and 3 units using strategy.order() at the stop, limit1, and
limit2 prices respectively.

After adding the strategy to our chart, we see it doesn’t work as intended. The issue with this script
is that strategy.order() doesn’t belong to an OCA group by default, unlike strategy.exit(). Since we
have not explicitly assigned the orders to an OCA group, the strategy does not cancel or reduce
them when it fills one, meaning it’s possible to trade a greater quantity than the open position and
reverse the direction:

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dorder
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dorder
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Doca%7Bdot%7Dreduce
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id26
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dorder

//@version=5
strategy("Multiple TP Demo", overlay = true)

var float stop = na
var float limit1 = na
var float limit2 = na

bool longCondition = ta.crossover(ta.sma(close, 5), ta.sma(close, 9))

if longCondition and strategy.position_size == 0
 stop := close * 0.99
 limit1 := close * 1.01
 limit2 := close * 1.02
 strategy.entry("Long", strategy.long, 6)
 strategy.order("Stop", strategy.short, stop = stop, qty = 6)
 strategy.order("Limit 1", strategy.short, limit = limit1, qty = 3)
 strategy.order("Limit 2", strategy.short, limit = limit2, qty = 3)

bool showPlot = strategy.position_size != 0
plot(showPlot ? stop : na, "Stop", color.red, style = plot.style_linebr)
plot(showPlot ? limit1 : na, "Limit 1", color.green, style = plot.style_linebr)
plot(showPlot ? limit2 : na, "Limit 2", color.green, style = plot.style_linebr)

For our strategy to work as intended, we must instruct it to reduce the number of units for the other
stop-loss/take-profit orders so that they do not exceed the size of the remaining open position.

In the example below, we’ve set the oca_name for each order in our exit strategy to “Bracket” and
the oca_type to strategy.oca.reduce. These settings tell the strategy to reduce the qty values of
orders in the “Bracket” group by the qty filled when it executes one of them, preventing it from
trading an excessive number of units and causing a reversal:

https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Doca%7Bdot%7Dreduce

//@version=5
strategy("Multiple TP Demo", overlay = true)

var float stop = na
var float limit1 = na
var float limit2 = na

bool longCondition = ta.crossover(ta.sma(close, 5), ta.sma(close, 9))
if longCondition and strategy.position_size == 0
 stop := close * 0.99
 limit1 := close * 1.01
 limit2 := close * 1.02
 strategy.entry("Long", strategy.long, 6)
 strategy.order("Stop", strategy.short, stop = stop, qty = 6, oca_name =
"Bracket", oca_type = strategy.oca.reduce)
 strategy.order("Limit 1", strategy.short, limit = limit1, qty = 3, oca_name
= "Bracket", oca_type = strategy.oca.reduce)
 strategy.order("Limit 2", strategy.short, limit = limit2, qty = 6, oca_name
= "Bracket", oca_type = strategy.oca.reduce)

bool showPlot = strategy.position_size != 0
plot(showPlot ? stop : na, "Stop", color.red, style = plot.style_linebr)
plot(showPlot ? limit1 : na, "Limit 1", color.green, style = plot.style_linebr)
plot(showPlot ? limit2 : na, "Limit 2", color.green, style = plot.style_linebr)

Note that:
• We changed the qty of the “Limit 2” order to 6 instead of 3 because the strategy will

reduce its value by 3 when it fills the “Limit 1” order. Keeping the qty value of 3
would cause it to drop to 0 and never fill after filling the first limit order.

`strategy.oca.none`

The strategy.oca.none OCA type specifies that an order executes independently of any OCA group.
This value is the default oca_type for strategy.order() and strategy.entry() order placement
commands.

Note

If two order placement commands have the same oca_name but different oca_type values, the
strategy considers them to be from two distinct groups. i.e., OCA groups cannot combine
strategy.oca.cancel, strategy.oca.reduce, and strategy.oca.none OCA types.

Currency
Pine Script® strategies can use different base currencies than the instruments they calculate on.
Users can specify the simulated account’s base currency by including a currency.* variable as
the currency argument in the strategy() function, which will change the script’s
strategy.account_currency value. The default currency value for strategies is currency.NONE,
meaning that the script uses the base currency of the instrument on the chart.

When a strategy script uses a specified base currency, it multiplies the simulated profits by the
FX_IDC conversion rate from the previous trading day. For example, the strategy below places an
entry order for a standard lot (100,000 units) with a profit target and stop-loss of 1 point on each of
the last 500 chart bars, then plots the net profit alongside the inverted daily close of the symbol in a
separate pane. We have set the base currency to currency.EUR. When we add this script to
FX_IDC:EURUSD, the two plots align, confirming the strategy uses the previous day’s rate from
this symbol for its calculations:

//@version=5
strategy("Currency Test", currency = currency.EUR)

if last_bar_index - bar_index < 500
 strategy.entry("LE", strategy.long, 100000)
 strategy.exit("LX", "LE", profit = 1, loss = 1)
plot(math.abs(ta.change(strategy.netprofit)), "1 Point profit", color =
color.fuchsia, linewidth = 4)
plot(request.security(syminfo.tickerid, "D", 1 / close)[1], "Previous day's
inverted price", color = color.lime)

Note that:
• When trading on timeframes higher than daily, the strategy will use the closing price

from one trading day before the bar closes for cross-rate calculation on historical bars.

https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Daccount_currency
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id28
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Doca%7Bdot%7Dnone
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Doca%7Bdot%7Dreduce
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Doca%7Bdot%7Dcancel
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dorder
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Doca%7Bdot%7Dnone
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id27

For example, on a weekly timeframe, it will base the cross-rate on the previous
Thursday’s closing value, though the strategy will still use the daily closing rate for
real-time bars.

Altering calculation behavior
Strategies execute on all historical bars available from a chart, then automatically continue their
calculations in real-time as new data is available. By default, strategy scripts only calculate once per
confirmed bar. We can alter this behavior by changing the parameters of the strategy() function or
clicking the checkboxes in the “Recalculate” section of the script’s “Properties” tab.

`calc_on_every_tick`

calc_on_every_tick is an optional setting that controls the calculation behavior on real-time
data. When this parameter is enabled, the script will recalculate its values on each new price tick.
By default, its value is false, meaning the script only executes calculations after a bar is confirmed.

Enabling this calculation behavior may be particularly useful when forward testing since it
facilitates granular, real-time strategy simulation. However, it’s important to note that this behavior
introduces a data difference between real-time and historical simulations, as historical bars do not
contain tick information. Users should exercise caution with this setting, as the data difference may
cause a strategy to repaint its history.

The following script will simulate a new order each time that close reaches the highest or
lowest value over the input length. Since calc_on_every_tick is enabled in the strategy
declaration, the script will simulate new orders on each new real-time price tick after compilation:

//@version=5
strategy("Donchian Channel Break", overlay = true, calc_on_every_tick = true,
pyramiding = 20)

int length = input.int(15, "Length")

float highest = ta.highest(close, length)
float lowest = ta.lowest(close, length)

if close == highest
 strategy.entry("Buy", strategy.long)
if close == lowest
 strategy.entry("Sell", strategy.short)

//@variable The starting time for real-time bars.
var realTimeStart = timenow

// Color the background of real-time bars.
bgcolor(time_close >= realTimeStart ? color.new(color.orange, 80) : na)

plot(highest, "Highest", color = color.lime)
plot(lowest, "Lowest", color = color.red)

Note that:
• The script uses a pyramiding value of 20 in its declaration, which allows the

strategy to simulate a maximum of 20 trades in the same direction.
• To visually demarcate what bars are processed as real-time bars by the strategy, the

script colors the background for all bars since the timenow when it was last compiled.

After applying the script to the chart and letting it calculate on some real-time bars, we may see an

https://www.tradingview.com/pine-script-reference/v5/#var_timenow
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id30
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id29

output like the following:

The script placed “Buy” orders on each new real-time tick the condition was valid on, resulting in
multiple orders per bar. However, it may surprise users unfamiliar with this behavior to see the
strategy’s outputs change after recompiling the script, as the bars that it previously executed real-
time calculations on are now historical bars, which do not hold tick information:

`calc_on_order_fills`

The optional calc_on_order_fills setting enables the recalculation of a strategy
immediately after simulating an order fill, which allows the script to use more granular prices and
place additional orders without waiting for a bar to be confirmed.

Enabling this setting can provide the script with additional data that would otherwise not be
available until after a bar closes, such as the current average price of a simulated position on an
unconfirmed bar.

The example below shows a simple strategy declared with calc_on_order_fills enabled that
simulates a “Buy” order when the strategy.position_size is 0. The script uses the
strategy.position_avg_price to calculate a stopLoss and takeProfit and simulates “Exit”
orders when the price crosses them, regardless of whether the bar is confirmed. As a result, as soon
as an exit is triggered, the strategy recalculates and places a new entry order because the
strategy.position_size is once again equal to 0. The strategy places the order once the exit happens
and executes it on the next tick after the exit, which will be one of the bar’s OHLC values,
depending on the emulated intrabar movement:

//@version=5
strategy("Intrabar exit", overlay = true, calc_on_order_fills = true)

float stopSize = input.float(5.0, "SL %", minval = 0.0) / 100.0
float profitSize = input.float(5.0, "TP %", minval = 0.0) / 100.0

if strategy.position_size == 0.0
 strategy.entry("Buy", strategy.long)

float stopLoss = strategy.position_avg_price * (1.0 - stopSize)
float takeProfit = strategy.position_avg_price * (1.0 + profitSize)

strategy.exit("Exit", stop = stopLoss, limit = takeProfit)

Note that:
• With calc_on_order_fills turned off, the same strategy will only ever enter

one bar after it triggers an exit order. First, the mid-bar exit will happen, but no entry
order. Then, the strategy will simulate an entry order once the bar closes, which it will
fill on the next tick after that, i.e., the open of the next bar.

It’s important to note that enabling calc_on_order_fills may produce unrealistic strategy
results, as the broker emulator may assume order prices that are not possible when trading in real-

https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dposition_size
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dposition_avg_price
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Dposition_size
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id31

time. Users must exercise caution with this setting and carefully consider the logic in their scripts.

The following example simulates a “Buy” order after each new order fill and bar confirmation over
a 25-bar window from the last_bar_index when the script loaded on the chart. With the setting
enabled, the strategy simulates four entries per bar since the emulator considers each bar to have
four ticks (open, high, low, close), which is unrealistic behavior, as it’s not typically possible for an
order to fill at the exact high or low of a bar:

//@version=5
strategy("buy on every fill", overlay = true, calc_on_order_fills = true,
pyramiding = 100)

if last_bar_index - bar_index <= 25
 strategy.entry("Buy", strategy.long)

`process_orders_on_close`

The default strategy behavior simulates orders at the close of each bar, meaning that the earliest
opportunity to fill the orders and execute strategy calculations and alerts is upon the opening of the
following bar. Traders can change this behavior to process a strategy using the closing value of each
bar by enabling the process_orders_on_close setting.

This behavior is most useful when backtesting manual strategies in which traders exit positions
before a bar closes or in scenarios where algorithmic traders in non-24x7 markets set up after-hours
trading capability so that alerts sent after close still have hope of filling before the following day.

Note that:
• It’s crucial to be aware that using strategies with process_orders_on_close in

a live trading environment may lead to a repainting strategy, as alerts on the close of a
bar still occur when the market closes, and orders may not fill until the next market
open.

Simulating trading costs
For a strategy performance report to contain relevant, meaningful data, traders should strive to
account for potential real-world costs in their strategy results. Neglecting to do so may give traders
an unrealistic view of strategy performance and undermine the credibility of test results. Without
modeling the potential costs associated with their trades, traders may overestimate a strategy’s
historical profitability, potentially leading to suboptimal decisions in live trading. Pine Script®
strategies include inputs and parameters for simulating trading costs in performance results.

Commission

Commission refers to the fee a broker/exchange charges when executing trades. Depending on the
broker/exchange, some may charge a flat fee per trade or contract/share/lot/unit, and others may
charge a percentage of the total transaction value. Users can set the commission properties of their
strategies by including commission_type and commission_value arguments in the
strategy() function or by setting the “Commission” inputs in the “Properties” tab of the strategy
settings.

The following script is a simple strategy that simulates a “Long” position of 2% of equity when
close equals the highest value over the length, and closes the trade when it equals the

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id34
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id33
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id32
https://www.tradingview.com/pine-script-reference/v5/#var_last_bar_index

lowest value:

//@version=5
strategy("Commission Demo", overlay=true, default_qty_value = 2,
default_qty_type = strategy.percent_of_equity)

length = input.int(10, "Length")

float highest = ta.highest(close, length)
float lowest = ta.lowest(close, length)

switch close
 highest => strategy.entry("Long", strategy.long)
 lowest => strategy.close("Long")

plot(highest, color = color.new(color.lime, 50))
plot(lowest, color = color.new(color.red, 50))

Upon inspecting the results in the Strategy Tester, we see that the strategy had a positive equity
growth of 17.61% over the testing range. However, the backtest results do not account for fees the
broker/exchange may charge. Let’s see what happens to these results when we include a small
commission on every trade in the strategy simulation. In this example, we’ve included
commission_type = strategy.commission.percent and commission_value =
1 in the strategy() declaration, meaning it will simulate a commission of 1% on all executed orders:

//@version=5
strategy(
 "Commission Demo", overlay=true, default_qty_value = 2, default_qty_type =
strategy.percent_of_equity,
 commission_type = strategy.commission.percent, commission_value = 1
)

length = input.int(10, "Length")

float highest = ta.highest(close, length)
float lowest = ta.lowest(close, length)

switch close
 highest => strategy.entry("Long", strategy.long)
 lowest => strategy.close("Long")

plot(highest, color = color.new(color.lime, 50))
plot(lowest, color = color.new(color.red, 50))

As we can see in the example above, after applying a 1% commission to the backtest, the strategy
simulated a significantly reduced net profit of only 1.42% and a more volatile equity curve with an
elevated max drawdown, highlighting the impact commission simulation can have on a strategy’s
test results.

Slippage and unfilled limits

In real-life trading, a broker/exchange may fill orders at slightly different prices than a trader
intended due to volatility, liquidity, order size, and other market factors, which can profoundly
impact a strategy’s performance. The disparity between expected prices and the actual prices at

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id35
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy

which the broker/exchange executes trades is what we refer to as slippage. Slippage is dynamic and
unpredictable, making it impossible to simulate precisely. However, factoring in a small amount of
slippage on each trade during a backtest or forward test may help the results better align with
reality. Users can model slippage in their strategy results, sized as a fixed number of ticks, by
including a slippage argument in the strategy() declaration or by setting the “Slippage” input in
the “Properties” tab of the strategy settings.

The following example demonstrates how slippage simulation affects the fill prices of market
orders in a strategy test. The script below places a “Buy” market order of 2% equity when the
market price is above an EMA while the EMA is rising and closes the position when the price dips
below the EMA while it’s falling. We’ve included slippage = 20 in the strategy() function,
which declares that the price of each simulated order will slip 20 ticks in the direction of the trade.
The script uses strategy.opentrades.entry_bar_index() and strategy.closedtrades.exit_bar_index() to
get the entryIndex and exitIndex, which it utilizes to obtain the fillPrice of the order.
When the bar index is at the entryIndex, the fillPrice is the first
strategy.opentrades.entry_price() value. At the exitIndex, fillPrice is the
strategy.closedtrades.exit_price() value from the last closed trade. The script plots the expected fill
price along with the simulated fill price after slippage to visually compare the difference:

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclosedtrades%7Bdot%7Dexit_price
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dopentrades%7Bdot%7Dentry_price
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclosedtrades%7Bdot%7Dexit_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dopentrades%7Bdot%7Dentry_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy

//@version=5
strategy(
 "Slippage Demo", overlay = true, slippage = 20,
 default_qty_value = 2, default_qty_type = strategy.percent_of_equity
)

int length = input.int(5, "Length")

//@variable Exponential moving average with an input `length`.
float ma = ta.ema(close, length)

//@variable Returns `true` when `ma` has increased and `close` is greater than
it, `false` otherwise.
bool longCondition = close > ma and ma > ma[1]
//@variable Returns `true` when `ma` has decreased and `close` is less than it,
`false` otherwise.
bool shortCondition = close < ma and ma < ma[1]

// Enter a long market position on `longCondition`, close the position on
`shortCondition`.
if longCondition
 strategy.entry("Buy", strategy.long)
if shortCondition
 strategy.close("Buy")

//@variable The `bar_index` of the position's entry order fill.
int entryIndex = strategy.opentrades.entry_bar_index(0)
//@variable The `bar_index` of the position's close order fill.
int exitIndex = strategy.closedtrades.exit_bar_index(strategy.closedtrades - 1)

//@variable The fill price simulated by the strategy.
float fillPrice = switch bar_index
 entryIndex => strategy.opentrades.entry_price(0)
 exitIndex => strategy.closedtrades.exit_price(strategy.closedtrades - 1)

//@variable The expected fill price of the open market position.
float expectedPrice = fillPrice ? open : na

color expectedColor = na
color filledColor = na

if bar_index == entryIndex
 expectedColor := color.green
 filledColor := color.blue
else if bar_index == exitIndex
 expectedColor := color.red
 filledColor := color.fuchsia

plot(ma, color = color.new(color.orange, 50))

plotchar(fillPrice ? open : na, "Expected fill price", "—", location.absolute,
expectedColor)
plotchar(fillPrice, "Fill price after slippage", "—", location.absolute,
filledColor)

Note that:
• Since the strategy applies constant slippage to all order fills, some orders can fill

outside the candle range in the simulation. Thus users should exercise caution with this
setting, as excessive simulated slippage can produce unrealistically worse testing
results.

Some traders may assume that they can avoid the adverse effects of slippage by using limit orders,
as unlike market orders, they cannot execute at a worse price than the specified value. However,
depending on the state of the real-life market, even if the market price reaches an order price,
there’s a chance that a limit order may not fill, as limit orders can only fill if a security has sufficient
liquidity and price action around the value. To account for the possibility of unfilled orders in a
backtest, users can specify the backtest_fill_limits_assumption value in the
declaration statement or use the “Verify price for limit orders” input in the “Properties” tab to
instruct the strategy to fill limit orders only after prices move a defined number of ticks past order
prices.

The following example places a limit order of 2% equity at a bar’s hlcc4 when the high is the
highest value over the past length bars and there are no pending entries. The strategy closes
the market position and cancels all orders when the low is the lowest value. Each time the
strategy triggers an order, it draws a horizontal line at the limitPrice, which it updates on each
bar until closing the position or canceling the order:

//@version=5
strategy(
 "Verify price for limits example", overlay = true,
 default_qty_type = strategy.percent_of_equity, default_qty_value = 2
)

int length = input.int(25, title = "Length")

//@variable Draws a line at the limit price of the most recent entry order.
var line limitLine = na

// Highest high and lowest low
highest = ta.highest(length)
lowest = ta.lowest(length)

// Place an entry order and draw a new line when the the `high` equals the
`highest` value and `limitLine` is `na`.
if high == highest and na(limitLine)
 float limitPrice = hlcc4
 strategy.entry("Long", strategy.long, limit = limitPrice)
 limitLine := line.new(bar_index, limitPrice, bar_index + 1, limitPrice)

// Close the open market position, cancel orders, and set `limitLine` to `na`
when the `low` equals the `lowest` value.
if low == lowest
 strategy.cancel_all()
 limitLine := na
 strategy.close_all()

// Update the `x2` value of `limitLine` if it isn't `na`.
if not na(limitLine)
 limitLine.set_x2(bar_index + 1)

plot(highest, "Highest High", color = color.new(color.green, 50))
plot(lowest, "Lowest Low", color = color.new(color.red, 50))

By default, the script assumes that all limit orders are guaranteed to fill. However, this is often not
the case in real-life trading. Let’s add price verification to our limit orders to account for potentially
unfilled ones. In this example, we’ve included backtest_fill_limits_assumption = 3
in the strategy() function call. As we can see, using limit verification omits some simulated order
fills and changes the times of others since the entry orders can now only fill after the price
penetrates the limit price by three ticks:

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy

Note

It’s important to notice that although the limit verification changed the times of some order fills, the
strategy simulated them at the same prices. This “time-warping” effect is a compromise that
preserves the prices of verified limit orders, but it can cause the strategy to simulate their fills at
times that wouldn’t necessarily be possible in the real world. Users should exercise caution with this
setting and understand its limitations when analyzing strategy results.

Risk management
Designing a strategy that performs well, let alone one that does so in a broad class of markets, is a
challenging task. Most are designed for specific market patterns/conditions and may produce
uncontrollable losses when applied to other data. Therefore, a strategy’s risk management qualities
can be critical to its performance. Users can set risk management criteria in their strategy scripts
using the special commands with the strategy.risk prefix.

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id36

Strategies can incorporate any number of risk management criteria in any combination. All risk
management commands execute on every tick and order execution event, regardless of any changes
to the strategy’s calculation behavior. There is no way to disable any of these commands at a script’s
runtime. Irrespective of the risk rule’s location, it will always apply to the strategy unless the user
removes the call from the code.

strategy.risk.allow_entry_in()
This command overrides the market direction allowed for strategy.entry() commands. When a
user specifies the trade direction with this function (e.g., strategy.direction.long), the strategy
will only enter trades in that direction. However, it’s important to note that if a script calls an
entry command in the opposite direction while there’s an open market position, the strategy
will simulate a market order to exit the position.

strategy.risk.max_cons_loss_days()
This command cancels all pending orders, closes the open market position, and stops all
additional trade actions after the strategy simulates a defined number of trading days with
consecutive losses.

strategy.risk.max_drawdown()
This command cancels all pending orders, closes the open market position, and stops all
additional trade actions after the strategy’s drawdown reaches the amount specified in the
function call.

strategy.risk.max_intraday_filled_orders()
This command specifies the maximum number of filled orders per trading day (or per chart
bar if the timeframe is higher than daily). Once the strategy executes the maximum number of
orders for the day, it cancels all pending orders, closes the open market position, and halts
trading activity until the end of the current session.

strategy.risk.max_intraday_loss()
This command controls the maximum loss the strategy will tolerate per trading day (or per
chart bar if the timeframe is higher than daily). When the strategy’s losses reach this
threshold, it will cancel all pending orders, close the open market position, and stop all trading
activity until the end of the current session.

strategy.risk.max_position_size()
This command specifies the maximum possible position size when using strategy.entry()
commands. If the quantity of an entry command results in a market position that exceeds this
threshold, the strategy will reduce the order quantity so that the resulting position does not
exceed the limitation.

Margin
Margin is the minimum percentage of a market position a trader must hold in their account as
collateral to receive and sustain a loan from their broker to achieve their desired leverage. The
margin_long and margin_short parameters of the strategy() declaration and the “Margin for
long/short positions” inputs in the “Properties” tab of the script settings allow strategies to specify
margin percentages for long and short positions. For example, if a trader sets the margin for long
positions to 25%, they must have enough funds to cover 25% of an open long position. This margin
percentage also means the trader can potentially spend up to 400% of their equity on their trades.

If a strategy’s simulated funds cannot cover the losses from a margin trade, the broker emulator
triggers a margin call, which forcibly liquidates all or part of the position. The exact number of
contracts/shares/lots/units that the emulator liquidates is four times what is required to cover a loss
to prevent constant margin calls on subsequent bars. The emulator calculates the amount using the
following algorithm:

1. Calculate the amount of capital spent on the position: Money Spent = Quantity *

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id37
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Drisk%7Bdot%7Dmax_position_size
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Drisk%7Bdot%7Dmax_intraday_loss
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Drisk%7Bdot%7Dmax_intraday_filled_orders
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Drisk%7Bdot%7Dmax_drawdown
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Drisk%7Bdot%7Dmax_cons_loss_days
https://www.tradingview.com/pine-script-reference/v5/#var_strategy%7Bdot%7Ddirection%7Bdot%7Dlong
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Drisk%7Bdot%7Dallow_entry_in

Entry Price
2. Calculate the Market Value of Security (MVS): MVS = Position Size * Current
Price

3. Calculate the Open Profit as the difference between MVS and Money Spent. If the
position is short, we multiply this by -1.

4. Calculate the strategy’s equity value: Equity = Initial Capital + Net
Profit + Open Profit

5. Calculate the margin ratio: Margin Ratio = Margin Percent / 100
6. Calculate the margin value, which is the cash required to cover the trader’s portion of the

position: Margin = MVS * Margin Ratio
7. Calculate the available funds: Available Funds = Equity - Margin
8. Calculate the total amount of money the trader has lost: Loss = Available Funds /
Margin Ratio

9. Calculate how many contracts/shares/lots/units the trader would need to liquidate to cover
the loss. We truncate this value to the same decimal precision as the minimum position size
for the current symbol: Cover Amount = TRUNCATE(Loss / Current Price).

10.Calculate how many units the broker will liquidate to cover the loss: Margin Call =
Cover Amount * 4

To examine this calculation in detail, let’s add the built-in Supertrend Strategy to the
NASDAQ:TSLA chart on the 1D timeframe and set the “Order size” to 300% of equity and the
“Margin for long positions” to 25% in the “Properties” tab of the strategy settings:

The first entry happened at the bar’s opening price on 16 Sep 2010. The strategy bought 682,438
shares (Position size) at 4.43 USD (Entry price). Then, on 23 Sep 2010, when the price dipped to
3.9 (Current price), the emulator forcibly liquidated 111,052 shares via margin call.

Money spent: 682438 * 4.43 = 3023200.34
MVS: 682438 * 3.9 = 2661508.2
Open Profit: −361692.14
Equity: 1000000 + 0 − 361692.14 = 638307.86
Margin Ratio: 25 / 100 = 0.25
Margin: 2661508.2 * 0.25 = 665377.05
Available Funds: 638307.86 - 665377.05 = -27069.19
Money Lost: -27069.19 / 0.25 = -108276.76
Cover Amount: TRUNCATE(-108276.76 / 3.9) = TRUNCATE(-27763.27) = -27763
Margin Call Size: -27763 * 4 = - 111052

Strategy Alerts
Regular Pine Script® indicators have two different mechanisms to set up custom alert conditions:
the alertcondition() function, which tracks one specific condition per function call, and the alert()
function, which tracks all its calls simultaneously, but provides greater flexibility in the number of
calls, alert messages, etc.

Pine Script® strategies do not work with alertcondition() calls, but they do support the generation of
custom alerts via the alert() function. Along with this, each function that creates orders also comes
with its own built-in alert functionality that does not require any additional code to implement. As
such, any strategy that uses an order placement command can issue alerts upon order execution. The
precise mechanics of such built-in strategy alerts are described in the Order Fill events section of
the Alerts page in our User Manual.

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Alerts.html#pagealerts
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id38

When a strategy uses functions that create orders and the alert() function together, the alert
creation dialogue provides a choice between the conditions that it will trigger upon: it can trigger on
alert() events, order fill events, or both.

For many trading strategies, the latency between a triggered condition and a live trade can be a
critical performance factor. By default, strategy scripts can only execute alert() function calls on the
close of real-time bars, considering them to use alert.freq_once_per_bar_close, regardless of the
freq argument in the call. Users can change the alert frequency by also including
calc_on_every_tick = true in the strategy() call or selecting the “Recalculate on every
tick” option in the “Properties” tab of the strategy settings before creating the alert. However,
depending on the script, this may also adversely impact a strategy’s behavior, so exercise caution
and be aware of the limitations when using this approach.

When sending alerts to a third party for strategy automation, we recommend using order fill alerts
rather than the alert() function since they don’t suffer the same limitations; alerts from order fill
events execute immediately, unaffected by a script’s calc_on_every_tick setting. Users can
set the default message for order fill alerts via the @strategy_alert_message compiler
annotation. The text provided with this annotation will populate the “Message” field for order fills
in the alert creation dialogue.

The following script shows a simple example of a default order fill alert message. Above the
strategy() declaration statement, it uses @strategy_alert_message with placeholders for the
trade action, position size, ticker, and fill price values in the message text:

//@version=5
//@strategy_alert_message {{strategy.order.action}} {{strategy.position_size}}
{{ticker}} @ {{strategy.order.price}}
strategy("Alert Message Demo", overlay = true)
float fastMa = ta.sma(close, 5)
float slowMa = ta.sma(close, 10)

if ta.crossover(fastMa, slowMa)
 strategy.entry("buy", strategy.long)

if ta.crossunder(fastMa, slowMa)
 strategy.entry("sell", strategy.short)

plot(fastMa, "Fast MA", color.aqua)
plot(slowMa, "Slow MA", color.orange)

This script will populate the alert creation dialogue with its default message when the user selects
its name from the “Condition” dropdown tab:

Upon the alert trigger, the strategy will populate the placeholders in the alert message with their
corresponding values. For example:

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#var_alert%7Bdot%7Dfreq_once_per_bar_close
https://www.tradingview.com/pine-script-reference/v5/#fun_alert

Notes on testing strategies
It’s common for traders to test and tune their strategies in historical and real-time market conditions
because many believe that analyzing the results may provide valuable insight into a strategy’s
characteristics, potential weaknesses, and possibly its future potential. However, traders should
always be aware of the biases and limitations of simulated strategy results, especially when using
the results to support live trading decisions. This section outlines some caveats associated with
strategy validation and tuning and possible solutions to mitigate their effects.

Note

While testing strategies on existing data may give traders helpful information about a strategy’s
qualities, it’s important to note that neither the past nor the present guarantees the future. Financial
markets can change rapidly and unpredictably, which may cause a strategy to sustain uncontrollable
losses. Additionally, simulated results may not fully account for other real-world factors that can
impact trading performance. Therefore, we recommend that traders thoroughly understand the
limitations and risks when evaluating backtests and forward tests and consider them “parts of the
whole” in their validation processes rather than basing decisions solely on the results.

Backtesting and forward testing

Backtesting is a technique that traders use to evaluate the historical performance of a trading
strategy or model by simulating and analyzing its past results on historical market data; this
technique assumes that analysis of a strategy’s results on past data may provide insight into its
strengths and weaknesses. When backtesting, many traders tweak the parameters of a strategy in an
attempt to optimize its results. Analysis and optimization of historical results may help traders to
gain a deeper understanding of a strategy. However, traders should always understand the risks and
limitations when basing their decisions on optimized backtest results.

Parallel to backtesting, prudent trading system development often also involves incorporating real-
time analysis as a tool for evaluating a trading system on a forward-looking basis. Forward testing
aims to gauge the performance of a strategy in real-time, real-world market conditions, where
factors such as trading costs, slippage, and liquidity can meaningfully affect its performance.

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id40
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id39

Forward testing has the distinct advantage of not being affected by certain types of biases (e.g.,
lookahead bias or “future data leakage”) but carries the disadvantage of being limited in the
quantity of data to test. Therefore, it’s not typically a standalone solution for strategy validation, but
it can provide helpful insights into a strategy’s performance in current market conditions.

Backtesting and forward testing are two sides of the same coin, as both approaches aim to validate
the effectiveness of a strategy and identify its strengths and weaknesses. By combining backtesting
and forward testing, traders may be able to compensate for some limitations and gain a clearer
perspective on their strategy’s performance. However, it’s up to traders to sanitize their strategies
and evaluation processes to ensure that insights align with reality as closely as possible.

Lookahead bias

One typical issue in backtesting some strategies, namely ones that request alternate timeframe data,
use repainting variables such as timenow, or alter calculation behavior for intrabar order fills, is the
leakage of future data into the past during evaluation, which is known as lookahead bias. Not only
is this bias a common cause of unrealistic strategy results since the future is never actually
knowable beforehand, but it is also one of the typical causes of strategy repainting. Traders can
often confirm this bias by forward testing their systems, as lookahead bias does not apply to real-
time data where no known data exists beyond the current bar. Users can eliminate this bias in their
strategies by ensuring that they don’t use repainting variables that leak the future into the past,
request.*() functions don’t include barmerge.lookahead_on without offsetting the data series
as described on this section of our page on repainting, and they use realistic calculation behavior.

Selection bias

Selection bias is a common issue that many traders experience when testing their strategies. It
occurs when a trader only analyzes results on specific instruments or timeframes while ignoring
others. This bias can result in a distorted perspective of the strategy’s robustness, which may impact
trading decisions and performance optimizations. Traders can reduce the effects of selection bias by
evaluating their strategies on multiple, ideally diverse, symbols and timeframes, making it a point
not to ignore poor performance results in their analysis or cherry-pick testing ranges.

Overfitting

A common pitfall when optimizing a backtest is the potential for overfitting (“curve fitting”), which
occurs when the strategy is tailored for specific data and fails to generalize well on new, unseen
data. One widely-used approach to help reduce the potential for overfitting and promote better
generalization is to split an instrument’s data into two or more parts to test the strategy outside the
sample used for optimization, otherwise known as “in-sample” (IS) and “out-of-sample” (OOS)
backtesting. In this approach, traders use the IS data for strategy optimization, while the OOS
portion is used for testing and evaluating IS-optimized performance on new data without further
optimization. While this and other, more robust approaches may provide a glimpse into how a
strategy might fare after optimization, traders should exercise caution, as the future is inherently
unknowable. No trading strategy can guarantee future performance, regardless of the data used for
testing and optimization.

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id43
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id42
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html#pagerepainting
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html?highlight=barmerge#future-leak-with-request-security
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge%7Bdot%7Dlookahead_on
https://www.tradingview.com/pine-script-reference/v5/#var_timenow
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#id41
https://www.tradingview.com/

Tables
• Introduction
• Creating tables

• Placing a single value in a fixed position
• Coloring the chart’s background
• Creating a display panel
• Displaying a heatmap

• Tips

Introduction
Tables are objects that can be used to position information in specific and fixed locations in a
script’s visual space. Contrary to all other plots or objects drawn in Pine Script®, tables are not
anchored to specific bars; they float in a script’s space, whether in overlay or pane mode, in studies
or strategies, independently of the chart bars being viewed or the zoom factor used.

Tables contain cells arranged in columns and rows, much like a spreadsheet. They are created and
populated in two distincts steps:

1. A table’s structure and key attributes are defined using table.new(), which returns a table ID
that acts like a pointer to the table, just like label, line, or array IDs do. The table.new() call
will create the table object but does not display it.

2. Once created, and for it to display, the table must be populated using one table.cell() call for
each cell. Table cells can contain text, or not. This second step is when the width and height
of cells are defined.

Most attributes of a previously created table can be changed using table.set_*() setter
functions. Attributes of previously populated cells can be modified using table.cell_set_*()
functions.

A table is positioned in an indicator’s space by anchoring it to one of nine references: the four
corners or midpoints, including the center. Tables are positioned by expanding the table from its
anchor, so a table anchored to the position.middle_right reference will be drawn by expanding up,
down and left from that anchor.

Two modes are available to determine the width/height of table cells:

• A default automatic mode calculates the width/height of cells in a column/row using the
widest/highest text in them.

• An explicit mode allows programmers to define the width/height of cells using a percentage
of the indicator’s available x/y space.

Displayed table contents always represent the last state of the table, as it was drawn on the script’s
last execution, on the dataset’s last bar. Contrary to values displayed in the Data Window or in
indicator values, variable contents displayed in tables will thus not change as a script user moves his
cursor over specific chart bars. For this reason, it is strongly recommended to always restrict
execution of all table.*() calls to either the first or last bars of the dataset. Accordingly:

• Use the var keyword to declare tables.
• Enclose all other calls inside an if barstate.islast block.

Multiple tables can be used in one script, as long as they are each anchored to a different
position. Each table object is identified by its own ID. Limits on the quantity of cells in all
tables are determined by the total number of cells used in one script.

https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Dislast
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#var_position%7Bdot%7Dmiddle_right
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dnew
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#tips
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#displaying-a-heatmap
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#creating-a-display-panel
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#coloring-the-chart-s-background
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#placing-a-single-value-in-a-fixed-position
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#creating-tables
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#introduction

Creating tables
When creating a table using table.new(), three parameters are mandatory: the table’s position and its
number of columns and rows. Five other parameters are optional: the table’s background color, the
color and width of the table’s outer frame, and the color and width of the borders around all cells,
excluding the outer frame. All table attributes except its number of columns and rows can be
modified using setter functions: table.set_position(), table.set_bgcolor(), table.set_frame_color(),
table.set_frame_width(), table.set_border_color() and table.set_border_width().

Tables can be deleted using table.delete(), and their content can be selectively removed using
table.clear().

When populating cells using table.cell(), you must supply an argument for four mandatory
parameters: the table id the cell belongs to, its column and row index using indices that start at zero,
and the text string the cell contains, which can be null. Seven other parameters are optional: the
width and height of the cell, the text’s attributes (color, horizontal and vertical alignment, size), and
the cell’s background color. All cell attributes can be modified using setter functions:
table.cell_set_text(), table.cell_set_width(), table.cell_set_height(), table.cell_set_text_color(),
table.cell_set_text_halign(), table.cell_set_text_valign(), table.cell_set_text_size() and
table.cell_set_bgcolor().

Keep in mind that each successive call to table.cell() redefines all the cell’s properties, deleting any
properties set by previous table.cell() calls on the same cell.

Placing a single value in a fixed position

Let’s create our first table, which will place the value of ATR in the upper-right corner of the chart.
We first create a one-cell table, then populate that cell:

//@version=5
indicator("ATR", "", true)
// We use `var` to only initialize the table on the first bar.
var table atrDisplay = table.new(position.top_right, 1, 1)
// We call `ta.atr()` outside the `if` block so it executes on each bar.
myAtr = ta.atr(14)
if barstate.islast
 // We only populate the table on the last bar.
 table.cell(atrDisplay, 0, 0, str.tostring(myAtr))

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#id3
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell_set_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell_set_text_size
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell_set_text_valign
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell_set_text_halign
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell_set_text_color
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell_set_height
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell_set_width
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell_set_text
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dclear
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Ddelete
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dset_border_width
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dset_border_color
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dset_frame_width
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dset_frame_color
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dset_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dset_position
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dnew
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#id2

Note that:

• We use the var keyword when creating the table with table.new().
• We populate the cell inside an if barstate.islast block using table.cell().
• When populating the cell, we do not specify the width or height. The width and height

of our cell will thus adjust automatically to the text it contains.
• We call ta.atr(14) prior to entry in our if block so that it evaluates on each bar. Had we

used str.tostring(ta.atr(14)) inside the if block, the function would not have
evaluated correctly because it would be called on the dataset’s last bar without having
calculated the necessary values from the previous bars.

Let’s improve the usability and aesthethics of our script:

//@version=5
indicator("ATR", "", true)
atrPeriodInput = input.int(14, "ATR period", minval = 1, tooltip = "Using a
period of 1 yields True Range.")

var table atrDisplay = table.new(position.top_right, 1, 1, bgcolor = color.gray,
frame_width = 2, frame_color = color.black)
myAtr = ta.atr(atrPeriodInput)
if barstate.islast
 table.cell(atrDisplay, 0, 0, str.tostring(myAtr, format.mintick), text_color
= color.white)

https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Dislast
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#op_var

Note that:

• We used table.new() to define a background color, a frame color and its width.
• When populating the cell with table.cell(), we set the text to display in white.
• We pass format.mintick as a second argument to the str.tostring() function to restrict the

precision of ATR to the chart’s tick precision.
• We now use an input to allow the script user to specify the period of ATR. The input also

includes a tooltip, which the user can see when he hovers over the “i” icon in the script’s
“Settings/Inputs” tab.

Coloring the chart’s background

This example uses a one-cell table to color the chart’s background on the bull/bear state of RSI:

//@version=5
indicator("Chart background", "", true)
bullColorInput = input.color(color.new(color.green, 95), "Bull", inline = "1")
bearColorInput = input.color(color.new(color.red, 95), "Bear", inline = "1")
// ————— Function colors chart bg on RSI bull/bear state.
colorChartBg(bullColor, bearColor) =>
 var table bgTable = table.new(position.middle_center, 1, 1)
 float r = ta.rsi(close, 20)
 color bgColor = r > 50 ? bullColor : r < 50 ? bearColor : na
 if barstate.islast
 table.cell(bgTable, 0, 0, width = 100, height = 100, bgcolor = bgColor)

colorChartBg(bullColorInput, bearColorInput)

Note that:

• We provide users with inputs allowing them to specify the bull/bear colors to use for the
background, and send those input colors as arguments to our f_colorChartBg()
function.

• We create a new table only once, using the var keyword to declare the table.
• We use table.cell() on the last bar only, to specify the cell’s properties. We make the cell the

https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#id4
https://www.tradingview.com/pine-script-reference/v5/#fun_str%7Bdot%7Dtostring
https://www.tradingview.com/pine-script-reference/v5/#var_format%7Bdot%7Dmintick
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dnew

width and height of the indicator’s space, so it covers the whole chart.

Creating a display panel

Tables are ideal to create sophisticated display panels. Not only do they make it possible for display
panels to always be visible in a constant position, they provide more flexible formatting because
each cell’s properties are controlled separately: background, text color, size and alignment, etc.

Here, we create a basic display panel showing a user-selected quantity of MAs values. We display
their period in the first column, then their value with a green/red/gray background that varies with
price’s position with regards to each MA. When price is above/below the MA, the cell’s background
is colored with the bull/bear color. When the MA falls between the current bar’s open and close, the
cell’s background is of the neutral color.

https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#id5

//@version=5
indicator("Price vs MA", "", true)

var string GP1 = "Moving averages"
int masQtyInput = input.int(20, "Quantity", minval = 1, maxval = 40,
group = GP1, tooltip = "1-40")
int masStartInput = input.int(20, "Periods begin at", minval = 2, maxval =
200, group = GP1, tooltip = "2-200")
int masStepInput = input.int(20, "Periods increase by", minval = 1, maxval
= 100, group = GP1, tooltip = "1-100")

var string GP2 = "Display"
string tableYposInput = input.string("top", "Panel position", inline = "11",
options = ["top", "middle", "bottom"], group = GP2)
string tableXposInput = input.string("right", "", inline = "11", options =
["left", "center", "right"], group = GP2)
color bullColorInput = input.color(color.new(color.green, 30), "Bull", inline
= "12", group = GP2)
color bearColorInput = input.color(color.new(color.red, 30), "Bear", inline =
"12", group = GP2)
color neutColorInput = input.color(color.new(color.gray, 30), "Neutral",
inline = "12", group = GP2)

var table panel = table.new(tableYposInput + "_" + tableXposInput, 2,
masQtyInput + 1)
if barstate.islast
 // Table header.
 table.cell(panel, 0, 0, "MA", bgcolor = neutColorInput)
 table.cell(panel, 1, 0, "Value", bgcolor = neutColorInput)

int period = masStartInput
for i = 1 to masQtyInput
 // ————— Call MAs on each bar.
 float ma = ta.sma(close, period)
 // ————— Only execute table code on last bar.
 if barstate.islast
 // Period in left column.
 table.cell(panel, 0, i, str.tostring(period), bgcolor = neutColorInput)
 // If MA is between the open and close, use neutral color. If close is
lower/higher than MA, use bull/bear color.
 bgColor = close > ma ? open < ma ? neutColorInput : bullColorInput :
open > ma ? neutColorInput : bearColorInput
 // MA value in right column.
 table.cell(panel, 1, i, str.tostring(ma, format.mintick), text_color =
color.black, bgcolor = bgColor)
 period += masStepInput

Note that:

• Users can select the table’s position from the inputs, as well as the bull/bear/neutral colors to
be used for the background of the right column’s cells.

• The table’s quantity of rows is determined using the number of MAs the user chooses to
display. We add one row for the column headers.

• Even though we populate the table cells on the last bar only, we need to execute the calls to
ta.sma() on every bar so they produce the correct results. The compiler warning that appears
when you compile the code can be safely ignored.

• We separate our inputs in two sections using group, and join the relevant ones on the same
line using inline. We supply tooltips to document the limits of certain fields using
tooltip.

https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dsma

Displaying a heatmap

Our next project is a heatmap, which will indicate the bull/bear relationship of the current price
relative to its past values. To do so, we will use a table positioned at the bottom of the chart. We will
display colors only, so our table will contain no text; we will simply color the background of its
cells to produce our heatmap. The heatmap uses a user-selectable lookback period. It loops across
that period to determine if price is above/below each bar in that past, and displays a progressively
lighter intensity of the bull/bear color as we go further in the past:

//@version=5
indicator("Price vs Past", "", true)

var int MAX_LOOKBACK = 300

int lookBackInput = input.int(150, minval = 1, maxval = MAX_LOOKBACK, step
= 10)
color bullColorInput = input.color(#00FF00ff, "Bull", inline = "11")
color bearColorInput = input.color(#FF0080ff, "Bear", inline = "11")

// ————— Function draws a heatmap showing the position of the current `_src`
relative to its past `_lookBack` values.
drawHeatmap(src, lookBack) =>
 // float src : evaluated price series.
 // int lookBack: number of past bars evaluated.

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#id6

 // Dependency: MAX_LOOKBACK

 // Force historical buffer to a sufficient size.
 max_bars_back(src, MAX_LOOKBACK)
 // Only run table code on last bar.
 if barstate.islast
 var heatmap = table.new(position.bottom_center, lookBack, 1)
 for i = 1 to lookBackInput
 float transp = 100. * i / lookBack
 if src > src[i]
 table.cell(heatmap, lookBack - i, 0, bgcolor =
color.new(bullColorInput, transp))
 else
 table.cell(heatmap, lookBack - i, 0, bgcolor =
color.new(bearColorInput, transp))

drawHeatmap(high, lookBackInput)

Note that:

• We define a maximum lookback period as a MAX_LOOKBACK constant. This is an important
value and we use it for two purposes: to specify the number of columns we will create in our
one-row table, and to specify the lookback period required for the _src argument in our

function, so that we force Pine Script® to create a historical buffer size that will allow us to
refer to the required quantity of past values of _src in our for loop.

• We offer users the possibility of configuring the bull/bear colors in the inputs and we use
inline to place the color selections on the same line.

• Inside our function, we enclose our table-creation code in an if barstate.islast construct so
that it only runs on the last bar of the chart.

• The initialization of the table is done inside the if statement. Because of that, and the fact
that it uses the var keyword, initialization only occurs the first time the script executes on a
last bar. Note that this behavior is different from the usual var declarations in the script’s
global scope, where initialization occurs on the first bar of the dataset, at bar_index zero.

• We do not specify an argument to the text parameter in our table.cell() calls, so an empty
string is used.

• We calculate our transparency in such a way that the intensity of the colors decreases as we
go further in history.

• We use dynamic color generation to create different transparencies of our base colors as
needed.

• Contrary to other objects displayed in Pine scripts, this heatmap’s cells are not linked to
chart bars. The configured lookback period determines how many table cells the heatmap
contains, and the heatmap will not change as the chart is panned horizontally, or scaled.

• The maximum number of cells that can be displayed in the scritp’s visual space will depend
on your viewing device’s resolution and the portion of the display used by your chart.
Higher resolution screens and wider windows will allow more table cells to be displayed.

Tips
• When creating tables in strategy scripts, keep in mind that unless the strategy uses
calc_on_every_tick = true, table code enclosed in if barstate.islast blocks will not
execute on each realtime update, so the table will not display as you expect.

• Keep in mind that successive calls to table.cell() overwrite the cell’s properties specified by
previous table.cell() calls. Use the setter functions to modify a cell’s properties.

• Remember to control the execution of your table code wisely by restricting it to the

https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Dislast
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#id7
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dcell
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#var_barstate%7Bdot%7Dislast
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_for

necessary bars only. This saves server resources and your charts will display faster, so
everybody wins.

Text and shapes
• Introduction
• `plotchar()`
• `plotshape()`
• `plotarrow()`
• Labels

• Creating and modifying labels
• Positioning labels
• Reading label properties
• Cloning labels
• Deleting labels
• Realtime behavior

Introduction
You may display text or shapes using five different ways with Pine Script®:

• plotchar()
• plotshape()
• plotarrow()
• Labels created with label.new()
• Tables created with table.new() (see Tables)

Which one to use depends on your needs:

• Tables can display text in various relative positions on charts that will not move as users
scroll of zoom the chart horizontally. Their content is not tethered to bars. In contrast, text
displayed with plotchar(), plotshape() or label.new() is always tethered to a specific bar, so it
will move with the bar’s position on the chart. See the page on Tables for more information
on them.

• Three function include are able to display pre-defined shapes: plotshape(), plotarrow() and
Labels created with label.new().

• plotarrow() cannot display text, only up or down arrows.
• plotchar() and plotshape() can display non-dynamic (not of “series” form) text on any bar or

all bars of the chart.
• plotchar() can only display one character while plotshape() can display strings, including

line breaks.
• label.new() can display a maximum of 500 labels on the chart. Its text can contain dynamic

text, or “series strings”. Line breaks are also supported in label text.
• While plotchar() and plotshape() can display text at a fixed offset in the past or the future,

which cannot change during the script’s execution, each label.new() call can use a “series”
offset that can be calculated on the fly.

These are a few things to keep in mind concerning Pine Script® strings:

https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#pagetables
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#pagetables
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#realtime-behavior
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#deleting-labels
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#cloning-labels
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#reading-label-properties
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#positioning-labels
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#creating-and-modifying-labels
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#labels
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#plotarrow
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#plotshape
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#plotchar
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#introduction
https://www.tradingview.com/

• Since the text parameter in both plotchar() and plotshape() require a “const string”
argument, it cannot contain values such as prices that can only be known on the bar (“series
string”).

• To include “series” values in text displayed using label.new(), they will first need to be
converted to strings using str.tostring().

• The concatenation operator for strings in Pine is +. It is used to join string components into
one string, e.g., msg = "Chart symbol: " + syminfo.tickerid (where
syminfo.tickerid is a built-in variable that returns the chart’s exchange and symbol
information in string format).

• Characters displayed by all these functions can be Unicode characters, which may include
Unicode symbols. See this Exploring Unicode script to get an idea of what can be done with
Unicode characters.

• The color or size of text can sometimes be controlled using function parameters, but no
inline formatting (bold, italics, monospace, etc.) is possible.

• Text from Pine scripts always displays on the chart in the Trebuchet MS font, which is used
in many TradingView texts, including this one.

This script displays text using the four methods available in Pine Script®:

//@version=5
indicator("Four displays of text", overlay = true)
plotchar(ta.rising(close, 5), "`plotchar()`", "?", location.belowbar,
color.lime, size = size.small)
plotshape(ta.falling(close, 5), "`plotchar()`", location = location.abovebar,
color = na, text = "•`plotshape()•`\n?", textcolor = color.fuchsia, size =
size.huge)

if bar_index % 25 == 0
 label.new(bar_index, na, "•LABEL•\nHigh = " + str.tostring(high,
format.mintick) + "\n?", yloc = yloc.abovebar, style = label.style_none,
textcolor = color.black, size = size.normal)

printTable(txt) => var table t = table.new(position.middle_right, 1, 1),
table.cell(t, 0, 0, txt, bgcolor = color.yellow)
printTable("•TABLE•\n" + str.tostring(bar_index + 1) + " bars\nin the dataset")

Note that:

• The method used to display each text string is shown with the text, except for the lime up
arrows displayed using plotchar(), as it can only display one character.

• Label and table calls can be inserted in conditional structures to control when their are
executed, whereas plotchar() and plotshape() cannot. Their conditional plotting must be
controlled using their first argument, which is a “series bool” whose true or false value
determines when the text is displayed.

• Numeric values displayed in the table and labels is first converted to a string using
str.tostring().

• We use the + operator to concatenate string components.
• plotshape() is designed to display a shape with accompanying text. Its size parameter

controls the size of the shape, not of the text. We use na for its color argument so that the
shape is not visible.

• Contrary to other texts, the table text will not move as you scroll or scale the chart.
• Some text strings contain the ? Unicode arrow (U+1F807).

https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_str%7Bdot%7Dtostring
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/script/0rFQOCKf-Exploring-Unicode/
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dtickerid
https://www.tradingview.com/pine-script-reference/v5/#fun_str%7Bdot%7Dtostring
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar

• Some text strings contain the \n sequence that represents a new line.

`plotchar()`
This function is useful to display a single character on bars. It has the following syntax:

plotchar(series, title, char, location, color, offset, text, textcolor,
editable, size, show_last, display) → void

See the Reference Manual entry for plotchar() for details on its parameters.

As explained in the When the script’s scale must be preserved section of our page on Debugging,
the function can be used to display and inspect values in the Data Window or in the indicator values
displayed to the right of the script’s name on the chart:

//@version=5
indicator("", "", true)
plotchar(bar_index, "Bar index", "", location.top)

Note that:

• The cursor is on the chart’s last bar.
• The value of bar_index on that bar is displayed in indicator values (1) and in the Data

Window (2).
• We use location.top because the default location.abovebar will put the price into play in the

script’s scale, which will often interfere with other plots.

plotchar() also works well to identify specific points on the chart or to validate that conditions are
true when we expect them to be. This example displays an up arrow under bars where close, high
and volume have all been rising for two bars:

//@version=5
indicator("", "", true)
bool longSignal = ta.rising(close, 2) and ta.rising(high, 2) and (na(volume) or
ta.rising(volume, 2))
plotchar(longSignal, "Long", "▲", location.belowbar, color = na(volume) ?
color.gray : color.blue, size = size.tiny)

Note that:

• We use (na(volume) or ta.rising(volume, 2)) so our script will work on
symbols without volume data. If we did not make provisions for when there is no volume
data, which is what na(volume) does by being true when there is no volume, the
longSignal variable’s value would never be true because ta.rising(volume,
2) yields false in those cases.

• We display the arrow in gray when there is no volume, to remind us that all three base
conditions are not being met.

• Because plotchar() is now displaying a character on the chart, we use size =
size.tiny to control its size.

• We have adapted the location argument to display the character under bars.

If you don’t mind plotting only circles, you could also use plot() to achieve a similar effect:

https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#var_location%7Bdot%7Dabovebar
https://www.tradingview.com/pine-script-reference/v5/#var_location%7Bdot%7Dtop
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#pagedebugging
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#pagedebugging-whenthescriptsscalemustbepreserved
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#id6

//@version=5
indicator("", "", true)
longSignal = ta.rising(close, 2) and ta.rising(high, 2) and (na(volume) or
ta.rising(volume, 2))
plot(longSignal ? low - ta.tr : na, "Long", color.blue, 2, plot.style_circles)

This method has the inconvenience that, since there is no relative positioning mechanism with plot()
one must shift the circles down using something like ta.tr (the bar’s “True Range”):

`plotshape()`
This function is useful to display pre-defined shapes and/or text on bars. It has the following syntax:

plotshape(series, title, style, location, color, offset, text, textcolor,
editable, size, show_last, display) → void

See the Reference Manual entry for plotshape() for details on its parameters.

Let’s use the function to achieve more or less the same result as with our second example of the
previous section:

//@version=5
indicator("", "", true)
longSignal = ta.rising(close, 2) and ta.rising(high, 2) and (na(volume) or
ta.rising(volume, 2))
plotshape(longSignal, "Long", shape.arrowup, location.belowbar)

Note that here, rather than using an arrow character, we are using the shape.arrowup argument
for the style parameter.

It is possible to use different plotshape() calls to superimpose text on bars. You will need to use \n
followed by a special non-printing character that doesn’t get stripped out to preserve the newline’s
functionality. Here we’re using a Unicode Zero-width space (U+200E). While you don’t see it in the
following code’s strings, it is there and can be copy/pasted. The special Unicode character needs to
be the last one in the string for text going up, and the first one when you are plotting under the bar
and text is going down:

//@version=5
indicator("Lift text", "", true)
plotshape(true, "", shape.arrowup, location.abovebar, color.green, text =
"A")
plotshape(true, "", shape.arrowup, location.abovebar, color.lime, text =
"B\n")
plotshape(true, "", shape.arrowdown, location.belowbar, color.red, text =
"C")
plotshape(true, "", shape.arrowdown, location.belowbar, color.maroon, text =
"\nD")

The available shapes you can use with the style parameter are:

https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#id7
https://www.tradingview.com/pine-script-reference/v5/#var_ta%7Bdot%7Dtr
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

Argument Shape
With
Text Argument Shape With Text

shape.xcross shape.arrowup

shape.cross shape.arrowdown

shape.circle shape.square

shape.triangleup shape.diamond

shape.triangledown shape.labelup

shape.flag shape.labeldown

`plotarrow()`
The plotarrow function displays up or down arrows of variable length, based on the relative value of
the series used in the function’s first argument. It has the following syntax:

plotarrow(series, title, colorup, colordown, offset, minheight, maxheight,
editable, show_last, display) → void

See the Reference Manual entry for plotarrow() for details on its parameters.

The series parameter in plotarrow() is not a “series bool” as in plotchar() and plotshape(); it is a
“series int/float” and there’s more to it than a simple true or false value determining when the
arrows are plotted. This is the logic governing how the argument supplied to series affects the
behavior of plotarrow():

• series > 0: An up arrow is displayed, the length of which will be proportional to the
relative value of the series on that bar in relation to other series values.

• series < 0: A down arrow is displayed, proportionally-sized using the same rules.
• series == 0 or na(series): No arrow is displayed.

The maximum and minimum possible sizes for the arrows (in pixels) can be controlled using the
minheight and maxheight parameters.

Here is a simple script illustrating how plotarrow() works:

//@version=5
indicator("", "", true)
body = close - open
plotarrow(body, colorup = color.teal, colordown = color.orange)

https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#id8

Note how the heigth of arrows is proportional to the relative size of the bar bodies.

You can use any series to plot the arrows. Here we use the value of the “Chaikin Oscillator” to
control the location and size of the arrows:

//@version=5
indicator("Chaikin Oscillator Arrows", overlay = true)
fastLengthInput = input.int(3, minval = 1)
slowLengthInput = input.int(10, minval = 1)
osc = ta.ema(ta.accdist, fastLengthInput) - ta.ema(ta.accdist, slowLengthInput)
plotarrow(osc)

Note that we display the actual “Chaikin Oscillator” in a pane below the chart, so you can see what
values are used to determine the position and size of the arrows.

Labels
Labels are only available in v4 and higher versions of Pine Script®. They work very differently than
plotchar() and plotshape().

Labels are objects, like lines and boxes, or tables. Like them, they are referred to using an ID, which
acts like a pointer. Label IDs are of “label” type. As with other objects, labels IDs are “time series”
and all the functions used to manage them accept “series” arguments, which makes them very
flexible.

Note

On TradingView charts, a complete set of Drawing Tools allows users to create and modify
drawings using mouse actions. While they may sometimes look similar to drawing objects created
with Pine Script® code, they are unrelated entities. Drawing objects created using Pine code cannot
be modified with mouse actions, and hand-drawn drawings from the chart user interface are not
visible from Pine scripts.

Labels are advantageous because:

• They allow “series” values to be converted to text and placed on charts. This means they are
ideal to display values that cannot be known before time, such as price values, support and
resistance levels, of any other values that your script calculates.

• Their positioning options are more flexible that those of the plot*() functions.
• They offer more display modes.
• Contrary to plot*() functions, label-handling functions can be inserted in conditional or

loop structures, making it easier to control their behavior.
• You can add tooltips to labels.

One drawback to using labels versus plotchar() and plotshape() is that you can only draw a limited
quantity of them on the chart. The default is ~50, but you can use the max_labels_count
parameter in your indicator() or strategy() declaration statement to specify up to 500. Labels, like
lines and boxes, are managed using a garbage collection mechanism which deletes the oldest ones
on the chart, such that only the most recently drawn labels are visible.

Your toolbox of built-ins to manage labels are all in the label namespace. They include:

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#pagelinesandboxes
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Tables.html#pagetables
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#pagelinesandboxes
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#id9

• label.new() to create labels.
• label.set_*() functions to modify the properties of an existing label.
• label.get_*() functions to read the properties of an existing label.
• label.delete() to delete labels
• The label.all array which always contains the IDs of all the visible labels on the chart. The

array’s size will depend on the maximum label count for your script and how many of those
you have drawn. aray.size(label.all) will return the array’s size.

Creating and modifying labels

The label.new() function creates a new label. It has the following signature:

label.new(x, y, text, xloc, yloc, color, style, textcolor, size, textalign,
tooltip) → series label

The setter functions allowing you to change a label’s properties are:

• label.set_x()
• label.set_y()
• label.set_xy()
• label.set_text()
• label.set_xloc()
• label.set_yloc()
• label.set_color()
• label.set_style()
• label.set_textcolor()
• label.set_size()
• label.set_textalign()
• label.set_tooltip()

They all have a similar signature. The one for label.set_color() is:

label.set_color(id, color) → void

where:

• id is the ID of the label whose property is to be modified.
• The next parameter is the property of the label to modify. It depends on the setter function

used. label.set_xy() changes two properties, so it has two such parameters.

This is how you can create labels in their simplest form:

//@version=5
indicator("", "", true)
label.new(bar_index, high)

Note that:

• The label is created with the parameters x = bar_index (the index of the current bar,
bar_index) and y = high (the bar’s high value).

• We do not supply an argument for the function’s text parameter. Its default value being an
empty string, no text is displayed.

• No logic controls our label.new() call, so labels are created on every bar.

https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_xy
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_color
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_tooltip
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_set_textalign
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_size
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_textcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_style
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_color
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_yloc
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_xloc
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_text
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_xy
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_y
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_x
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#id10
https://www.tradingview.com/pine-script-reference/v5/#var_label%7Bdot%7Dall
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Ddelete
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew

• Only the last 54 labels are displayed because our indicator() call does not use the
max_labels_count parameter to specify a value other than the ~50 default.

• Labels persist on bars until your script deletes them using label.delete(), or garbage
collection removes them.

In the next example we display a label on the bar with the highest high value in the last 50 bars:

//@version=5
indicator("", "", true)

// Find the highest `high` in last 50 bars and its offset. Change it's sign so
it is positive.
LOOKBACK = 50
hi = ta.highest(LOOKBACK)
highestBarOffset = - ta.highestbars(LOOKBACK)

// Create label on bar zero only.
var lbl = label.new(na, na, "", color = color.orange, style =
label.style_label_lower_left)
// When a new high is found, move the label there and update its text and
tooltip.
if ta.change(hi)
 // Build label and tooltip strings.
 labelText = "High: " + str.tostring(hi, format.mintick)
 tooltipText = "Offest in bars: " + str.tostring(highestBarOffset) + "\nLow:
" + str.tostring(low[highestBarOffset], format.mintick)
 // Update the label's position, text and tooltip.
 label.set_xy(lbl, bar_index[highestBarOffset], hi)
 label.set_text(lbl, labelText)
 label.set_tooltip(lbl, tooltipText)

Note that:

• We create the label on the first bar only by using the var keyword to declare the lbl
variable that contains the label’s ID. The x, y and text arguments in that label.new() call
are irrelevant, as the label will be updated on further bars. We do, however, take care to use
the color and style we want for the labels, so they don’t need updating later.

• On every bar, we detect if a new high was found by testing for changes in the value of hi
• When a change in the high value occurs, we update our label with new information. To do

this, we use three label.set*() calls to change the label’s relevant information. We
refer to our label using the lbl variable, which contains our label’s ID. The script is thus
maintaining the same label throughout all bars, but moving it and updating its information
when a new high is detected.

Here we create a label on each bar, but we set its properties conditionally, depending on the bar’s
polarity:

//@version=5
indicator("", "", true)
lbl = label.new(bar_index, na)
if close >= open
 label.set_text(lbl, "green")
 label.set_color(lbl, color.green)
 label.set_yloc(lbl, yloc.belowbar)
 label.set_style(lbl, label.style_label_up)
else
 label.set_text(lbl, "red")
 label.set_color(lbl, color.red)

https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Ddelete
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator

 label.set_yloc(lbl, yloc.abovebar)
 label.set_style(lbl, label.style_label_down)

Positioning labels

Labels are positioned on the chart according to x (bars) and y (price) coordinates. Five parameters
affect this behavior: x, y, xloc, yloc and style:

x
Is either a bar index or a time value. When a bar index is used, the value can be offset in the
past or in the future (maximum of 500 bars in the future). Past or future offsets can also be
calculated when using time values. The x value of an existing label can be modified using
label.set_x() or label.set_xy().

xloc
Is either xloc.bar_index (the default) or xloc.bar_time. It determines which type of argument
must be used with x. With xloc.bar_index, x must be an absolute bar index. With
xloc.bar_time, x must be a UNIX time in milliseconds corresponding to the time value of a
bar’s open. The xloc value of an existing label can be modified using label.set_xloc().

y
Is the price level where the label is positioned. It is only taken into account with the default
yloc value of yloc.price. If yloc is yloc.abovebar or yloc.belowbar then the y
argument is ignored. The y value of an existing label can be modified using label.set_y() or
label.set_xy().

yloc
Can be yloc.price (the default), yloc.abovebar or yloc.belowbar. The argument used for y is
only taken into account with yloc.price. The yloc value of an existing label can be modified
using label.set_yloc().

style
The argument used has an impact on the visual appearance of the label and on its position
relative to the reference point determined by either the y value or the top/bottom of the bar
when yloc.abovebar or yloc.belowbar are used. The style of an existing label can be
modified using label.set_style().

These are the available style arguments:

Argument Label

Label
with
text Argument Label

Label with
text

label.style_
xcross

 label.style_
label_up

label.style_
cross

 label.style_
label_down

label.style_
flag

 label.style_
label_left

https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_style
https://www.tradingview.com/pine-script-reference/v5/#var_yloc%7Bdot%7Dbelowbar
https://www.tradingview.com/pine-script-reference/v5/#var_yloc%7Bdot%7Dabovebar
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_yloc
https://www.tradingview.com/pine-script-reference/v5/#var_yloc%7Bdot%7Dprice
https://www.tradingview.com/pine-script-reference/v5/#var_yloc%7Bdot%7Dbelowbar
https://www.tradingview.com/pine-script-reference/v5/#var_yloc%7Bdot%7Dabovebar
https://www.tradingview.com/pine-script-reference/v5/#var_yloc%7Bdot%7Dprice
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_xy
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_y
https://www.tradingview.com/pine-script-reference/v5/#var_yloc%7Bdot%7Dbelowbar
https://www.tradingview.com/pine-script-reference/v5/#var_yloc%7Bdot%7Dabovebar
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_xloc
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_index
https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_xy
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dset_x
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#id11

Argument Label

Label
with
text Argument Label

Label with
text

label.style_
circle

 label.style_
label_right

label.style_
square

 label.style_
label_lower_
left

label.style_
diamond

 label.style_
label_lower_
right

label.style_
triangleup

 label.style_
label_upper_
left

label.style_
triangledown

 label.style_
label_upper_
right

label.style_
arrowup

 label.style_
label_center

label.style_
arrowdown

 label.style_
none

When using xloc.bar_time, the x value must be a UNIX timestamp in milliseconds. See the page on
Time for more information. The start time of the current bar can be obtained from the time built-in
variable. The bar time of previous bars is time[1], time[2] and so on. Time can also be set to
an absolute value with the timestamp function. You may add or subtract periods of time to achieve
relative time offset.

Let’s position a label one day ago from the date on the last bar:

//@version=5
indicator("")
daysAgoInput = input.int(1, tooltip = "Use negative values to offset in the
future")
if barstate.islast
 MS_IN_ONE_DAY = 24 * 60 * 60 * 1000
 oneDayAgo = time - (daysAgoInput * MS_IN_ONE_DAY)
 label.new(oneDayAgo, high, xloc = xloc.bar_time, style =
label.style_label_right)

Note that because of varying time gaps and missing bars when markets are closed, the positioning
of the label may not always be exact. Time offsets of the sort tend to be more reliable on 24x7
markets.

You can also offset using a bar index for the x value, e.g.:

label.new(bar_index + 10, high)
label.new(bar_index - 10, high[10])
label.new(bar_index[10], high[10])

https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#pagetime
https://www.tradingview.com/pine-script-reference/v5/#var_xloc%7Bdot%7Dbar_time

Reading label properties

The following getter functions are available for labels:

• label.get_x()
• label.get_y()
• label.get_text()

They all have a similar signature. The one for label.get_text() is:

label.get_text(id) → series string

where id is the label whose text is to be retrieved.

Cloning labels

The label.copy() function is used to clone labels. Its syntax is:

label.copy(id) → void

Deleting labels

The label.delete() function is used to delete labels. Its syntax is:

label.delete(id) → void

To keep only a user-defined quantity of labels on the chart, one could use code like this:

//@version=5
MAX_LABELS = 500
indicator("", max_labels_count = MAX_LABELS)
qtyLabelsInput = input.int(5, "Labels to keep", minval = 0, maxval = MAX_LABELS)
myRSI = ta.rsi(close, 20)
if myRSI > ta.highest(myRSI, 20)[1]
 label.new(bar_index, myRSI, str.tostring(myRSI, "#.00"), style =
label.style_none)
 if array.size(label.all) > qtyLabelsInput
 label.delete(array.get(label.all, 0))
plot(myRSI)

Note that:

• We define a MAX_LABELS constant to hold the maximum quantity of labels a script can
accommodate. We use that value to set the max_labels_count parameter’s value in our
indicator() call, and also as the maxval value in our input.int() call to cap the user value.

• We create a new label when our RSI breaches its highest value of the last 20 bars. Note the
offset of [1] we use in if myRSI > ta.highest(myRSI, 20)[1]. This is
necessary. Without it, the value returned by ta.highest() would always include the current
value of myRSI, so myRSI would never be higher than the function’s return value.

• After that, we delete the oldest label in the label.all array that is automatically maintained by
the Pine Script® runtime and contains the ID of all the visible labels drawn by our script. We
use the array.get() function to retrieve the array element at index zero (the oldest visible
label ID). We then use label.delete() to delete the label linked with that ID.

Note that if one wants to position a label on the last bar only, it is unnecessary and inefficent to

https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Ddelete
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dget
https://www.tradingview.com/pine-script-reference/v5/#var_label%7Bdot%7Dall
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dhighest
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dint
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Ddelete
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#id14
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dcopy
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#id13
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dget_text
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dget_text
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dget_y
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dget_x
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#id12

create and delete the label as the script executes on all bars, so that only the last label remains:

// INEFFICENT!
//@version=5
indicator("", "", true)
lbl = label.new(bar_index, high, str.tostring(high, format.mintick))
label.delete(lbl[1])

This is the efficient way to realize the same task:

//@version=5
indicator("", "", true)
if barstate.islast
 // Create the label once, the first time the block executes on the last bar.
 var lbl = label.new(na, na)
 // On all iterations of the script on the last bar, update the label's
information.
 label.set_xy(lbl, bar_index, high)
 label.set_text(lbl, str.tostring(high, format.mintick))

Realtime behavior

Labels are subject to both commit and rollback actions, which affect the behavior of a script when it
executes in the realtime bar. See the page on Pine Script®’s Execution model.

This script demonstrates the effect of rollback when running in the realtime bar:

//@version=5
indicator("", "", true)
label.new(bar_index, high)

On realtime bars, label.new() creates a new label on every script update, but because of the rollback
process, the label created on the previous update on the same bar is deleted. Only the last label
created before the realtime bar’s close will be committed, and thus persist.

Time
• Introduction

• Four references
• Time built-ins
• Time zones

• Time zone strings
• Time variables

• `time` and `time_close`
• `time_tradingday`
• `timenow`
• Calendar dates and times
• `syminfo.timezone()`

• Time functions
• `time()` and `time_close()`

• Testing for sessions
• Testing for changes in higher timeframes

• Calendar dates and times

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#testing-for-changes-in-higher-timeframes
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#testing-for-sessions
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#time-functions
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#syminfo-timezone
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#calendar-dates-and-times
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#timenow
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#time-tradingday
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#time-and-time-close
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#time-variables
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#time-zone-strings
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#time-zones
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#time-built-ins
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#four-references
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#introduction
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Text_and_shapes.html#id15
https://www.tradingview.com/

• `timestamp()`
• Formatting dates and time

Introduction

Four references

Four different references come into play when using date and time values in Pine Script®:

1. UTC time zone: The native format for time values in Pine Script® is the Unix time in
milliseconds. Unix time is the time elapsed since the Unix Epoch on January 1st, 1970.
See here for the current Unix time in seconds and here for more information on Unix Time.
A value for the Unix time is called a timestamp. Unix timestamps are always expressed in
the UTC (or “GMT”, or “GMT+0”) time zone. They are measured from a fixed reference,
i.e., the Unix Epoch, and do not vary with time zones. Some built-ins use the UTC time zone
as a reference.

2. Exchange time zone: A second time-related key reference for traders is the time zone of the
exchange where an instrument is traded. Some built-ins like hour return values in the
exchange’s time zone by default.

3. timezone parameter: Some functions that normally return values in the exchange’s time
zone, such as hour() include a timezone parameter that allows you to adapt the function’s
result to another time zone. Other functions like time() include both session and
timezone parameters. In those cases, the timezone argument applies to how the
session argument is interpreted — not to the time value returned by the function.

4. Chart’s time zone: This is the time zone chosen by the user from the chart using the “Chart
Settings/Symbol/Time Zone” field. This setting only affects the display of dates and times
on the chart. It does not affect the behavior of Pine scripts, and they have no visibility over
this setting.

When discussing variables or functions, we will note if they return dates or times in UTC or
exchange time zone. Scripts do not have visibility on the user’s time zone setting on his chart.

Time built-ins

Pine Script® has built-in variables to:

• Get timestamp information from the current bar (UTC time zone): time and time_close
• Get timestamp information for the beginning of the current trading day (UTC time zone):

time_tradingday
• Get the current time in one-second increments (UTC time zone): timenow
• Retrieve calendar and time values from the bar (exchange time zone): year, month,

weekofyear, dayofmonth, dayofweek, hour, minute and second
• Return the time zone of the exchange of the chart’s symbol with syminfo.timezone

There are also built-in functions that can:

• Return timestamps of bars from other timeframes with time() and time_close(), without the
need for a request.security() call

• Retrieve calendar and time values from any timestamp, which can be offset with a time
zone: year(), month(), weekofyear(), dayofmonth(), dayofweek(), hour(), minute() and
second()

• Create a timestamp using timestamp()
• Convert a timestamp to a formatted date/time string for display, using str.format()

https://www.tradingview.com/pine-script-reference/v5/#fun_str%7Bdot%7Dformat
https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-reference/v5/#fun_second
https://www.tradingview.com/pine-script-reference/v5/#fun_minute
https://www.tradingview.com/pine-script-reference/v5/#fun_hour
https://www.tradingview.com/pine-script-reference/v5/#fun_dayofweek
https://www.tradingview.com/pine-script-reference/v5/#fun_dayofmonth
https://www.tradingview.com/pine-script-reference/v5/#fun_weekofyear
https://www.tradingview.com/pine-script-reference/v5/#fun_month
https://www.tradingview.com/pine-script-reference/v5/#fun_year
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_time_close
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dtimezone
https://www.tradingview.com/pine-script-reference/v5/#var_second
https://www.tradingview.com/pine-script-reference/v5/#var_minute
https://www.tradingview.com/pine-script-reference/v5/#var_hour
https://www.tradingview.com/pine-script-reference/v5/#var_dayofweek
https://www.tradingview.com/pine-script-reference/v5/#var_dayofmonth
https://www.tradingview.com/pine-script-reference/v5/#var_weekofyear
https://www.tradingview.com/pine-script-reference/v5/#var_month
https://www.tradingview.com/pine-script-reference/v5/#var_year
https://www.tradingview.com/pine-script-reference/v5/#var_timenow
https://www.tradingview.com/pine-script-reference/v5/#var_time_tradingday
https://www.tradingview.com/pine-script-reference/v5/#var_time_close
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id5
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#fun_hour
https://www.tradingview.com/pine-script-reference/v5/#var_hour
https://en.wikipedia.org/wiki/Unix_time
https://www.unixtimestamp.com/
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id4
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id3
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#formatting-dates-and-time
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#timestamp

• Input data and time values. See the section on Inputs.
• Work with session information.

Time zones

TradingViewers can change the time zone used to display bar times on their charts. Pine scripts
have no visibility over this setting. While there is a syminfo.timezone variable to return the time
zone of the exchange where the chart’s instrument is traded, there is no chart.timezone
equivalent.

When displaying times on the chart, this shows one way of providing users a way of adjusting your
script’s time values to those of their chart. This way, your displayed times can match the time zone
used by traders on their chart:

//@version=5
indicator("Time zone control")
MS_IN_1H = 1000 * 60 * 60
TOOLTIP01 = "Enter your time zone's offset (+ or −), including a decimal
fraction if needed."
hoursOffsetInput = input.float(0.0, "Timezone offset (in hours)", minval =
-12.0, maxval = 14.0, step = 0.5, tooltip = TOOLTIP01)

printTable(txt) =>
 var table t = table.new(position.middle_right, 1, 1)
 table.cell(t, 0, 0, txt, text_halign = text.align_right, bgcolor =
color.yellow)

msOffsetInput = hoursOffsetInput * MS_IN_1H
printTable(
 str.format("Last bar''s open time UTC: {0,date,HH:mm:ss yyyy.MM.dd}", time) +
 str.format("\nLast bar''s close time UTC: {0,date,HH:mm:ss yyyy.MM.dd}",
time_close) +
 str.format("\n\nLast bar''s open time EXCHANGE: {0,date,HH:mm:ss yyyy.MM.dd}",
time(timeframe.period, syminfo.session, syminfo.timezone)) +
 str.format("\nLast bar''s close time EXCHANGE: {0,date,HH:mm:ss yyyy.MM.dd}",
time_close(timeframe.period, syminfo.session, syminfo.timezone)) +
 str.format("\n\nLast bar''s open time OFFSET ({0}): {1,date,HH:mm:ss
yyyy.MM.dd}", hoursOffsetInput, time + msOffsetInput) +
 str.format("\nLast bar''s close time OFFSET ({0}): {1,date,HH:mm:ss
yyyy.MM.dd}", hoursOffsetInput, time_close + msOffsetInput) +
 str.format("\n\nCurrent time OFFSET ({0}): {1,date,HH:mm:ss yyyy.MM.dd}",
hoursOffsetInput, timenow + msOffsetInput))

Note that:

• We convert the user offset expressed in hours to milliseconds with msOffsetInput. We
then add that offset to a timestamp in UTC format before converting it to display format,
e.g., time + msOffsetInput and timenow + msOffsetInput.

• We use a tooltip to provide instructions to users.
• We provide minval and maxval values to protect the input field, and a step value of 0.5

so that when they use the field’s up/down arrows, they can intuitively figure out that
fractions can be used.

• The str.format() function formats our time values, namely the last bar’s time and the current
time.

Some functions that normally return values in the exchange’s time zone provide means to adapt

https://www.tradingview.com/pine-script-reference/v5/#fun_str%7Bdot%7Dformat
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dtimezone
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id6
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#pagesessions
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#pageinputs

their result to another time zone through the timezone parameter. This script illustrates how to do
this with hour():

//@version=5
indicator('`hour(time, "GMT+0")` in orange')
color BLUE_LIGHT = #0000FF30
plot(hour, "", BLUE_LIGHT, 8)
plot(hour(time, syminfo.timezone))
plot(hour(time, "GMT+0"),"UTC", color.orange)

Note that:

• The hour variable and the hour() function normally returns a value in the exchange’s time
zone. Accordingly, plots in blue for both hour and hour(time,
syminfo.timezone) overlap. Using the function form with syminfo.timezone is
thus redundant if the exchange’s hour is required.

• The orange line plotting hour(time, "GMT+0"), however, returns the bar’s hour at
UTC, or “GMT+0” time, which in this case is four hours less than the exchange’s time, since
MSFT trades on the NASDAQ whose time zone is UTC-4.

Time zone strings

The argument used for the timezone parameter in functions such as time(), timestamp(), hour(),
etc., can be in different formats, which you can find in the IANA time zone database name reference
page. Contents from the “TZ database name”, “UTC offset ±hh:mm” and “UTC DST offset
±hh:mm” columns of that page’s table can be used.

To express an offset of +5.5 hours from UTC, these strings found in the reference page are all
equivalent:

• "GMT+05:30"
• "Asia/Calcutta"
• "Asia/Colombo"
• "Asia/Kolkata"

Non-fractional offsets can be expressed in the "GMT+5" form. "GMT+5.5" is not allowed.

Time variables

`time` and `time_close`

Let’s start by plotting time and time_close, the Unix timestamp in milliseconds of the bar’s opening
and closing time:

//@version=5
indicator("`time` and `time_close` values on bars")
plot(time, "`time`")
plot(time_close, "`time_close`")

Note that:

https://www.tradingview.com/pine-script-reference/v5/#var_time_close
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id9
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id8
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://www.tradingview.com/pine-script-reference/v5/#fun_hour
https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id7
https://www.tradingview.com/pine-script-reference/v5/#fun_hour
https://www.tradingview.com/pine-script-reference/v5/#var_hour
https://www.tradingview.com/pine-script-reference/v5/#fun_hour

• The time and time_close variables returns a timestamp in UNIX time, which is independent
of the timezone selected by the user on his chart. In this case, the chart’s time zone setting is
the exchange time zone, so whatever symbol is on the chart, its exchange time zone will be
used to display the date and time values on the chart’s cursor. The NASDAQ’s time zone is
UTC-4, but this only affects the chart’s display of date/time values; it does not impact the
values plotted by the script.

• The last time value for the plot shown in the scale is the number of milliseconds elapsed
from 00:00:00 UTC, 1 January, 1970, until the bar’s opening time. It corresponds to 17:30
on the 27th of September 2021. However, because the chart uses the UTC-4 time zone (the
NASDAQ’s time zone), it displays the 13:30 time, four hours earlier than UTC time.

• The difference between the two values on the last bar is the number of milliseconds in one
hour (1000 * 60 * 60 = 3,600,000) because we are on a 1H chart.

`time_tradingday`

time_tradingday is useful when a symbol trades on overnight sessions that start and close on
different calendar days. For example, this happens in forex markets where a session can open
Sunday at 17:00 and close Monday at 17:00.

The variable returns the time of the beginning of the trading day in UNIX time when used at
timeframes of 1D and less. When used on timeframes higher than 1D, it returns the starting time of
the last trading day in the bar (e.g., at 1W, it will return the starting time of the last trading day of
the week).

`timenow`

timenow returns the current time in UNIX time. It works in realtime, but also when a script
executes on historical bars. In realtime, your scripts will only perceive changes when they execute
on feed updates. When no updates occur, the script is idle, so it cannot update its display. See the
page on Pine Script®’s execution model for more information.

This script uses the values of timenow and time_close to calculate a realtime countdown for
intraday bars. Contrary to the countdown on the chart, this one will only update when a feed update
causes the script to execute another iteration:

//@version=5
indicator("", "", true)

printTable(txt) =>
 var table t = table.new(position.middle_right, 1, 1)
 table.cell(t, 0, 0, txt, text_halign = text.align_right, bgcolor =
color.yellow)

printTable(str.format("{0,time,HH:mm:ss.SSS}", time_close - timenow))

Calendar dates and times

Calendar date and time variables such as year, month, weekofyear, dayofmonth, dayofweek, hour,
minute and second can be useful to test for specific dates or times, and as arguments to timestamp().

When testing for specific dates or times, ones needs to account for the possibility that the script will
be executing on timeframes where the tested condition cannot be detected, or for cases where a bar
with the specific requirement will not exist. Suppose, for example, we wanted to detect the first
trading day of the month. This script shows how using only dayofmonth will not work when a
weekly chart is used or when no trading occurs on the 1st of the month:

https://www.tradingview.com/pine-script-reference/v5/#var_dayofmonth
https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-reference/v5/#var_second
https://www.tradingview.com/pine-script-reference/v5/#var_minute
https://www.tradingview.com/pine-script-reference/v5/#var_hour
https://www.tradingview.com/pine-script-reference/v5/#var_dayofweek
https://www.tradingview.com/pine-script-reference/v5/#var_dayofmonth
https://www.tradingview.com/pine-script-reference/v5/#var_weekofyear
https://www.tradingview.com/pine-script-reference/v5/#var_month
https://www.tradingview.com/pine-script-reference/v5/#var_year
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id12
https://www.tradingview.com/pine-script-reference/v5/#var_time_close
https://www.tradingview.com/pine-script-reference/v5/#var_timenow
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel
https://en.wikipedia.org/wiki/Unix_time
https://www.tradingview.com/pine-script-reference/v5/#var_timenow
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id11
https://en.wikipedia.org/wiki/Unix_time
https://www.tradingview.com/pine-script-reference/v5/#var_time_tradingday
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id10
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://en.wikipedia.org/wiki/Unix_time
https://www.tradingview.com/pine-script-reference/v5/#var_time_close
https://www.tradingview.com/pine-script-reference/v5/#var_time

//@version=5
indicator("", "", true)
firstDayIncorrect = dayofmonth == 1
firstDay = ta.change(time("M"))
plotchar(firstDayIncorrect, "firstDayIncorrect", "•", location.top, size =
size.small)
bgcolor(firstDay ? color.silver : na)

Note that:

• Using ta.change(time("M")) is more robust as it works on all months (#1 and #2),
displayed as the silver background, whereas the blue dot detected using dayofmonth ==
1 does not work (#1) when the first trading day of September occurs on the 2nd.

• The dayofmonth == 1 condition will be true on all intrabars of the first day of the
month, but ta.change(time("M")) will only be true on the first.

If you wanted your script to only display for years 2020 and later, you could use:

//@version=5
indicator("", "", true)
plot(year >= 2020 ? close : na, linewidth = 3)

`syminfo.timezone()`

syminfo.timezone returns the time zone of the chart symbol’s exchange. It can be helpful when a
timezone parameter is available in a function, and you want to mention that you are using the
exchange’s timezone explicitly. It is usually redundant because when no argument is supplied to
timezone, the exchange’s time zone is assumed.

Time functions

`time()` and `time_close()`

The time() and time_close() functions have the following signature:

time(timeframe, session, timezone) → series int
time_close(timeframe, session, timezone) → series int

They accept three arguments:

timeframe
A string in timeframe.period format.

session
An optional string in session specification format: "hhmm-hhmm[:days]", where the
[:days] part is optional. See the page on sessions for more information.

timezone
An optional value that qualifies the argument for session when one is used.

See the time() and time_close() entries in the Reference Manual for more information.

The time() function is most often used to:

1. Test if a bar is in a specific time period, which will require using the session parameter.

https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#fun_time_close
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#pagesessions
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Dperiod
https://www.tradingview.com/pine-script-reference/v5/#fun_time_close
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id15
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id14
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dtimezone
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id13

In those cases, timeframe.period, i.e., the chart’s timeframe, will often be used for the
first parameter. When using the function this way, we rely on the fact that it will return na
when the bar is not part of the period specified in the session argument.

2. Detecting changes in higher timeframes than the chart’s by using the higher timeframe for
the timeframe argument. When using the function for this purpose, we are looking for
changes in the returned value, which means the higher timeframe bar has changed. This will
usually require using ta.change() to test, e.g., ta.change(time("D")) will return the
change in time when a new higher timeframe bar comes in, so the expression’s result will
cast to a “bool” value when used in a conditional expression. The “bool” result will be true
when there is a change and false when there is no change.

Testing for sessions

Let’s look at an example of the first case where we want to determine if a bar’s starting time is part
of a period between 11:00 and 13:00:

//@version=5
indicator("Session bars", "", true)
inSession = not na(time(timeframe.period, "1100-1300"))
bgcolor(inSession ? color.silver : na)

Note that:

• We use time(timeframe.period, "1100-1300"), which says: “Check the chart’s
timeframe if the current bar’s opening time is between 11:00 and 13:00 inclusively”. The
function returns its opening time if the bar is in the session. If it is not, the function returns
na.

• We are interested in identifying the instances when time() does not return na because that
means the bar is in the session, so we test for not na(...). We do not use the actual
return value of time() when it is not na; we are only interested in whether it returns na or not.

Testing for changes in higher timeframes

It is often helpful to detect changes in a higher timeframe. For example, you may want to detect
trading day changes while on intraday charts. For these cases, you can use the fact that
time("D") returns the opening time of the 1D bar, even if the chart is at an intraday timeframe
such as 1H:

//@version=5
indicator("", "", true)
bool newDay = ta.change(time("D"))
bgcolor(newDay ? color.silver : na)

newExchangeDay = ta.change(dayofmonth)
plotchar(newExchangeDay, "newExchangeDay", "?", location.top, size = size.small)

Note that:

• The newDay variable detects changes in the opening time of 1D bars, so it follows the
conventions for the chart’s symbol, which uses overnight sessions of 17:00 to 17:00. It
changes values when a new session comes in.

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id17
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id16
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dchange
https://www.tradingview.com/pine-script-reference/v5/#var_na

• Because newExchangeDay detects change in dayofmonth in the calendar day, it changes
when the day changes on the chart.

• The two change detection methods only coincide on the chart when there are days without
trading. On Sundays here, for example, both detection methods will detect a change because
the calendar day changes from the last trading day (Friday) to the first calendar day of the
new week, Sunday, which is when Monday’s overnight session begins at 17:00.

Calendar dates and times

Calendar date and time functions such as year(), month(), weekofyear(), dayofmonth(),
dayofweek(), hour(), minute() and second() can be useful to test for specific dates or times. They all
have signatures similar to the ones shown here for dayofmonth():

dayofmonth(time) → series int
dayofmonth(time, timezone) → series int

This will plot the day of the opening of the bar where the January 1st, 2021 at 00:00 time falls
between its time and time_close values:

//@version=5
indicator("")
exchangeDay = dayofmonth(timestamp("2021-01-01"))
plot(exchangeDay)

The value will be the 31st or the 1st, depending on the calendar day of when the session opens on
the chart’s symbol. The date for symbols traded 24x7 at exchanges using the UTC time zone will be
the 1st. For symbols trading on exchanges at UTC-4, the date will be the 31st.

`timestamp()`

The timestamp() function has a few different signatures:

timestamp(year, month, day, hour, minute, second) → simple/series int
timestamp(timezone, year, month, day, hour, minute, second) → simple/series int
timestamp(dateString) → const int

The only difference between the first two is the timezone parameter. Its default value is
syminfo.timezone. See the Time zone strings section of this page for valid values.

The third form is used as a defval value in input.time(). See the timestamp() entry in the
Reference Manual for more information.

timestamp() is useful to generate a timestamp for a specific date. To generate a timestamp for Jan 1,
2021, use either one of these methods:

//@version=5
indicator("")
yearBeginning1 = timestamp("2021-01-01")
yearBeginning2 = timestamp(2021, 1, 1, 0, 0)
printTable(txt) => var table t = table.new(position.middle_right, 1, 1),
table.cell(t, 0, 0, txt, bgcolor = color.yellow)
printTable(str.format("yearBeginning1: {0,date,yyyy.MM.dd
hh:mm}\nyearBeginning2: {1,date,yyyy.MM.dd hh:mm}", yearBeginning1,
yearBeginning1))

You can use offsets in timestamp() arguments. Here, we subtract 2 from the value supplied for its
day parameter to get the date/time from the chart’s last bar two days ago. Note that because of
different bar alignments on various instruments, the bar identified on the chart may not always be
exactly 48 hours away, although the function’s return value is correct:

https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dtime
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#pagetime-timezonestrings
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo%7Bdot%7Dtimezone
https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id19
https://www.tradingview.com/pine-script-reference/v5/#var_time_close
https://www.tradingview.com/pine-script-reference/v5/#var_time_close
https://www.tradingview.com/pine-script-reference/v5/#fun_dayofmonth
https://www.tradingview.com/pine-script-reference/v5/#fun_second
https://www.tradingview.com/pine-script-reference/v5/#fun_minute
https://www.tradingview.com/pine-script-reference/v5/#fun_hour
https://www.tradingview.com/pine-script-reference/v5/#fun_dayofweek
https://www.tradingview.com/pine-script-reference/v5/#fun_dayofmonth
https://www.tradingview.com/pine-script-reference/v5/#fun_weekofyear
https://www.tradingview.com/pine-script-reference/v5/#fun_month
https://www.tradingview.com/pine-script-reference/v5/#fun_year
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id18
https://www.tradingview.com/pine-script-reference/v5/#var_dayofmonth

//@version=5
indicator("")
twoDaysAgo = timestamp(year, month, dayofmonth - 2, hour, minute)
printTable(txt) => var table t = table.new(position.middle_right, 1, 1),
table.cell(t, 0, 0, txt, bgcolor = color.yellow)
printTable(str.format("{0,date,yyyy.MM.dd hh:mm}", twoDaysAgo))

Formatting dates and time
Timestamps can be formatted using str.format(). These are examples of various formats:

//@version=5
indicator("", "", true)

print(txt, styl) =>
 var alignment = styl == label.style_label_right ? text.align_right :
text.align_left
 var lbl = label.new(na, na, "", xloc.bar_index, yloc.price, color(na), styl,
color.black, size.large, alignment)
 if barstate.islast
 label.set_xy(lbl, bar_index, hl2[1])
 label.set_text(lbl, txt)

var string format =
 "{0,date,yyyy.MM.dd hh:mm:ss}\n" +
 "{1,date,short}\n" +
 "{2,date,medium}\n" +
 "{3,date,long}\n" +
 "{4,date,full}\n" +
 "{5,date,h a z (zzzz)}\n" +
 "{6,time,short}\n" +
 "{7,time,medium}\n" +
 "{8,date,'Month 'MM, 'Week' ww, 'Day 'DD}\n" +
 "{9,time,full}\n" +
 "{10,time,hh:mm:ss}\n" +
 "{11,time,HH:mm:ss}\n" +
 "{12,time,HH:mm:ss} Left in bar\n"

print(format, label.style_label_right)
print(str.format(format,
 time, time, time, time, time, time, time,
 timenow, timenow, timenow, timenow,
 timenow - time, time_close - timenow), label.style_label_left)

Timeframes
• Introduction
• Timeframe string specifications
• Comparing timeframes

Introduction
The timeframe of a chart is sometimes also referred to as its interval or resolution. It is the unit of

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Timeframes.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Timeframes.html#comparing-timeframes
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Timeframes.html#timeframe-string-specifications
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Timeframes.html#introduction
https://www.tradingview.com/pine-script-reference/v5/#fun_str%7Bdot%7Dformat
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#id20

time represented by one bar on the chart. All standard chart types use a timeframe: “Bars”,
“Candles”, “Hollow Candles”, “Line”, “Area” and “Baseline”. One non-standard chart type also
uses timeframes: “Heikin Ashi”.

Programmers interested in accessing data from multiple timeframes will need to become familiar
with how timeframes are expressed in Pine Script®, and how to use them.

Timeframe strings come into play in different contexts:

• They must be used in request.security() when requesting data from another symbol and/or
timeframe. See the page on Other timeframes and data to explore the use of
request.security().

• They can be used as an argument to time() and time_close() functions, to return the time of a
higher timeframe bar. This, in turn, can be used to detect changes in higher timeframes from
the chart’s timeframe without using request.security(). See the Testing for changes in higher
timeframes section to see how to do this.

• The input.timeframe() function provides a way to allow script users to define a timeframe
through a script’s “Inputs” tab (see the Timeframe input section for more information).

• The indicator() declaration statement has an optional timeframe parameter that can be
used to provide multi-timeframe capabilities to simple scripts without using
request.security().

• Many built-in variables provide information on the timeframe used by the chart the script is
running on. See the Chart timeframe section for more information on them, including
timeframe.period which returns a string in Pine Script®’s timeframe specification format.

Timeframe string specifications
Timeframe strings follow these rules:

• They are composed of the multiplier and the timeframe unit, e.g., “1S”, “30” (30 minutes),
“1D” (one day), “3M” (three months).

• The unit is represented by a single letter, with no letter used for minutes: “S” for seconds,
“D” for days, “W” for weeks and “M” for months.

• When no multiplier is used, 1 is assumed: “S” is equivalent to “1S”, “D” to “1D, etc. If only
“1” is used, it is interpreted as “1min”, since no unit letter identifier is used for minutes.

• There is no “hour” unit; “1H” is not valid. The correct format for one hour is “60”
(remember no unit letter is specified for minutes).

• The valid multipliers vary for each timeframe unit:

• For seconds, only the discrete 1, 5, 10, 15 and 30 multipliers are valid.
• For minutes, 1 to 1440.
• For days, 1 to 365.
• For weeks, 1 to 52.
• For months, 1 to 12.

Comparing timeframes
It can be useful to compare different timeframe strings to determine, for example, if the timeframe
used on the chart is lower than the higher timeframes used in the script, as using timeframes lower
than the chart is usually not a good idea. See the Requesting data of a lower timeframe section for
more information on the subject.

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Other_timeframes_and_data.html#pageothertimeframesanddata-requestingdatafromalowertimeframe
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Timeframes.html#id3
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Timeframes.html#id2
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe%7Bdot%7Dperiod
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Chart_information.html#pagechartinformation-charttimeframe
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#pageinputs-timeframeinput
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsession
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#pagetime-testingforchangesinhighertimeframes
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Time.html#pagetime-testingforchangesinhighertimeframes
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_time_close
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Other_timeframes_and_data.html#pageothertimeframesanddata
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity

Converting timeframe strings to a representation in fractional minutes provides a way to compare
them using a universal unit. This script uses the timeframe.in_seconds() function to convert a
timeframe into float seconds and then converts the result into minutes:

//@version=5
indicator("Timeframe in minutes example", "", true)
string tfInput = input.timeframe(defval = "", title = "Input TF")

float chartTFInMinutes = timeframe.in_seconds() / 60
float inputTFInMinutes = timeframe.in_seconds(tfInput) / 60

var table t = table.new(position.top_right, 1, 1)
string txt = "Chart TF: " + str.tostring(chartTFInMinutes, "#.##### minutes")
+
"\nInput TF: " + str.tostring(inputTFInMinutes, "#.##### minutes")
if barstate.isfirst
 table.cell(t, 0, 0, txt, bgcolor = color.yellow)
else if barstate.islast
 table.cell_set_text(t, 0, 0, txt)

if chartTFInMinutes > inputTFInMinutes
 runtime.error("The chart's timeframe must not be higher than the input's
timeframe.")

Note that:

• We use the built-in timeframe.in_seconds() function to convert the chart and the
input.timeframe() function into seconds, then divide by 60 to convert into minutes.

• We use two calls to the timeframe.in_seconds() function in the initialization of the
chartTFInMinutes and inputTFInMinutes variables. In the first instance, we do
not supply an argument for its timeframe parameter, so the function returns the chart’s
timeframe in seconds. In the second call, we supply the timeframe selected by the script’s
user through the call to input.timeframe().

• Next, we validate the timeframes to ensure that the input timeframe is equal to or higher
than the chart’s timeframe. If it is not, we generate a runtime error.

• We finally print the two timeframe values converted to minutes.

Style guide
• Introduction
• Naming Conventions
• Script organization

• <license>
• <version>
• <declaration_statement>
• <import_statements>
• <constant_declarations>
• <inputs>
• <function_declarations>
• <calculations>
• <strategy_calls>
• <visuals>

https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#visuals
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#strategy-calls
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#calculations
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#function-declarations
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#inputs
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#constant-declarations
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#import-statements
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#declaration-statement
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#version
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#license
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#script-organization
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#naming-conventions
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#introduction
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsession
https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe%7Bdot%7Din_seconds
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsession
https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe%7Bdot%7Din_seconds
https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe%7Bdot%7Din_seconds

• <alerts>
• Spacing
• Line wrapping
• Vertical alignment
• Explicit typing

Introduction
This style guide provides recommendations on how to name variables and organize your Pine
scripts in a standard way that works well. Scripts that follow our best practices will be easier to
read, understand and maintain.

You can see scripts using these guidelines published from the TradingView and PineCoders
accounts on the platform.

Naming Conventions
We recommend the use of:

• camelCase for all identifiers, i.e., variable or function names: ma, maFast,
maLengthInput, maColor, roundedOHLC(), pivotHi().

• All caps SNAKE_CASE for constants: BULL_COLOR, BEAR_COLOR, MAX_LOOKBACK.
• The use of qualifying suffixes when it provides valuable clues about the type or provenance

of a variable: maShowInput, bearColor, bearColorInput, volumesArray,
maPlotID, resultsTable, levelsColorArray.

Script organization
The Pine Script® compiler is quite forgiving of the positioning of specific statements or the version
compiler annotation in the script. While other arrangements are syntactically correct, this is how we
recommend organizing scripts:

<license>
<version>
<declaration_statement>
<import_statements>
<constant_declarations>
<inputs>
<function_declarations>
<calculations>
<strategy_calls>
<visuals>
<alerts>

<license>

If you publish your open-source scripts publicly on TradingView (scripts can also be published
privately), your open-source code is by default protected by the Mozilla license. You may choose
any other license you prefer.

The reuse of code from those scripts is governed by our House Rules on Script Publishing which
preempt the author’s license.

The standard license comments appearing at the beginning of scripts are:

https://www.tradingview.com/support/solutions/43000590599
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id4
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#pagescriptstructure-compilerannotations
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id3
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id2
https://www.tradingview.com/u/PineCoders/#published-scripts
https://www.tradingview.com/u/TradingView/#published-scripts
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#explicit-typing
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#vertical-alignment
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#line-wrapping
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#spacing
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#alerts

// This source code is subject to the terms of the Mozilla Public License 2.0 at
https://mozilla.org/MPL/2.0/
// © username

<version>

This is the compiler annotation defining the version of Pine Script® the script will use. If none is
present, v1 is used. For v5, use:

//@version=5

<declaration_statement>

This is the mandatory declaration statement which defines the type of your script. It must be a call
to either indicator(), strategy(), or library().

<import_statements>

If your script uses one or more Pine Script® libraries, your import statements belong here.

<constant_declarations>

While there is a “constant” form in Pine Script®, there is no formal “constant” type. We nonetheless
use “constant” to denote variables of any type meeting these criteria:

• They are initialized using a literal (e.g., 100 or "AAPL") or a built-in of “const” form (e.g.,
color.green).

• Their value does not change during the script’s execution, meaning their value is never
redefined using :=.

We use SNAKE_CASE to name these variables and group their declaration near the top of the script.
For example:

// ————— Constants
int MS_IN_MIN = 60 * 1000
int MS_IN_HOUR = MS_IN_MIN * 60
int MS_IN_DAY = MS_IN_HOUR * 24

color GRAY = #808080ff
color LIME = #00FF00ff
color MAROON = #800000ff
color ORANGE = #FF8000ff
color PINK = #FF0080ff
color TEAL = #008080ff
color BG_DIV = color.new(ORANGE, 90)
color BG_RESETS = color.new(GRAY, 90)

string RST1 = "No reset; cumulate since the beginning of the chart"
string RST2 = "On a stepped higher timeframe (HTF)"
string RST3 = "On a fixed HTF"
string RST4 = "At a fixed time"
string RST5 = "At the beginning of the regular session"
string RST6 = "At the first visible chart bar"
string RST7 = "Fixed rolling period"

string LTF1 = "Least precise, covering many chart bars"
string LTF2 = "Less precise, covering some chart bars"
string LTF3 = "More precise, covering less chart bars"

https://www.tradingview.com/pine-script-docs/en/v5/language/Operators.html#pageoperators-reassignmentoperator
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id8
https://www.tradingview.com/pine-script-reference/v5/#op_import
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#pagelibraries
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id7
https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id6
https://www.tradingview.com/pine-script-docs/en/v5/language/Script_structure.html#pagescriptstructure-compilerannotations
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id5

string LTF4 = "Most precise, 1min intrabars"

string TT_TOTVOL = "The 'Bodies' value is the transparency of the total
volume candle bodies. Zero is opaque, 100 is transparent."
string TT_RST_HTF = "This value is used when '" + RST3 +"' is selected."
string TT_RST_TIME = "These values are used when '" + RST4 +"' is selected.
 A reset will occur when the time is greater or equal to the bar's open time,
and less than its close time.\nHour: 0-23\nMinute: 0-59"
string TT_RST_PERIOD = "This value is used when '" + RST7 +"' is selected."

In this example:

• The RST* and LTF* constants will be used as tuple elements in the options argument of
input.*() calls.

• The TT_* constants will be used as tooltip arguments in input.*() calls. Note how
we use a line continuation for long string literals.

• We do not use var to initialize constants. The Pine Script® runtime is optimized to handle
declarations on each bar, but using var to initialize a variable only the first time it is declared
incurs a minor penalty on script performance because of the maintenance that var variables
require on further bars.

Note that:

• Literals used in more than one place in a script should always be declared as a constant.
Using the constant rather than the literal makes it more readable if it is given a meaningful
name, and the practice makes code easier to maintain. Even though the quantity of
milliseconds in a day is unlikely to change in the future, MS_IN_DAY is more meaningful
than 1000 * 60 * 60 * 24.

• Constants only used in the local block of a function or if, while, etc., statement for example,
can be declared in that local block.

<inputs>

It is much easier to read scripts when all their inputs are in the same code section. Placing that
section at the beginning of the script also reflects how they are processed at runtime, i.e., before the
rest of the script is executed.

Suffixing input variable names with input makes them more readily identifiable when they are
used later in the script: maLengthInput, bearColorInput, showAvgInput, etc.

// ————— Inputs
string resetInput = input.string(RST2, "CVD Resets",
inline = "00", options = [RST1, RST2, RST3, RST4, RST5, RST6, RST7])
string fixedTfInput = input.timeframe("D", " Fixed HTF: ",      
tooltip = TT_RST_HTF)
int hourInput = input.int(9, " Fixed time   
hour: ", inline = "01", minval = 0, maxval = 23)  
int minuteInput = input.int(30, "minute",
inline = "01", minval = 0, maxval = 59, tooltip = TT_RST_TIME)
int fixedPeriodInput = input.int(20, " Fixed   
period: ", inline = "02", minval = 1, tooltip = TT_RST_PERIOD)  
string ltfModeInput = input.string(LTF3, "Intrabar
precision", inline = "03", options = [LTF1, LTF2, LTF3, LTF4])

<function_declarations>

All user-defined functions must be defined in the script’s global scope; nested function definitions

https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id10
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id9
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_var

are not allowed in Pine Script®.

Optimal function design should minimize the use of global variables in the function’s scope, as they
undermine function portability. When it can’t be avoided, those functions must follow the global
variable declarations in the code, which entails they can’t always be placed in the
<function_declarations> section. Such dependencies on global variables should ideally be
documented in the function’s comments.

It will also help readers if you document the function’s objective, parameters and result. The same
syntax used in libraries can be used to document your functions. This can make it easier to port your
functions to a library should you ever decide to do so.

//@version=5
indicator("<function_declarations>", "", true)

string SIZE_LARGE = "Large"
string SIZE_NORMAL = "Normal"
string SIZE_SMALL = "Small"

string sizeInput = input.string(SIZE_NORMAL, "Size", options = [SIZE_LARGE,
SIZE_NORMAL, SIZE_SMALL])

// @function Used to produce an argument for the `size` parameter in
built-in functions.
// @param userSize (simple string) User-selected size.
// @returns One of the `size.*` built-in constants.
// Dependencies: SIZE_LARGE, SIZE_NORMAL, SIZE_SMALL
getSize(simple string userSize) =>
 result =
 switch userSize
 SIZE_LARGE => size.large
 SIZE_NORMAL => size.normal
 SIZE_SMALL => size.small
 => size.auto

if ta.rising(close, 3)
 label.new(bar_index, na, yloc = yloc.abovebar, style = label.style_arrowup,
size = getSize(sizeInput))

<calculations>

This is where the script’s core calculations and logic should be placed. Code can be easier to read
when variable declarations are placed near the code segment using the variables. Some
programmers prefer to place all their non-constant variable declarations at the beginning of this
section, which is not always possible for all variables, as some may require some calculations to
have been executed before their declaration.

<strategy_calls>

Strategies are easier to read when strategy calls are grouped in the same section of the script.

<visuals>

This section should ideally include all the statements producing the script’s visuals, whether they be
plots, drawings, background colors, candle-plotting, etc. See the Pine Script® User Manual’s section
on here for more information on how the relative depth of visuals is determined.

https://www.tradingview.com/pine-script-docs/en/v5/concepts/Colors.html#pagecolors-zindex
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id13
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id12
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id11
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Libraries.html#pagelibraries

<alerts>

Alert code will usually require the script’s calculations to have executed before it, so it makes sense
to put it at the end of the script.

Spacing
A space should be used on both sides of all operators, except unary operators (-1). A space is also
recommended after all commas and when using named function arguments, as in plot(series
= close)

int a = close > open ? 1 : -1
var int newLen = 2
newLen := min(20, newlen + 1)
float a = -b
float c = d > e ? d - e : d
int index = bar_index % 2 == 0 ? 1 : 2
plot(close, color = color.red)

Line wrapping
Line wrapping can make long lines easier to read. Line wraps are defined by using an indentation
level that is not a multiple of four, as four spaces or a tab are used to define local blocks. Here we
use two spaces:

plot(
 series = close,
 title = "Close",
 color = color.blue,
 show_last = 10
)

Vertical alignment
Vertical alignment using tabs or spaces can be useful in code sections containing many similar lines
such as constant declarations or inputs. They can make mass edits much easier using the Pine
Script® Editor’s multi-cursor feature (ctrl + alt + ?/?):

// Colors used as defaults in inputs.
color COLOR_AQUA = #0080FFff
color COLOR_BLACK = #000000ff
color COLOR_BLUE = #013BCAff
color COLOR_CORAL = #FF8080ff
color COLOR_GOLD = #CCCC00ff

Explicit typing
Including the type of variables when declaring them is not required and is usually overkill for small
scripts; we do not systematically use it. It can be useful to make the type of a function’s result
clearer, and to distinguish a variable’s declaration (using =) from its reassignments (using :=).
Using explicit typing can also make it easier for readers to find their way in larger scripts.

https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id18
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id17
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id16
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id15
https://www.tradingview.com/pine-script-docs/en/v5/writing/Style_guide.html#id14

Debugging
• Introduction
• The lay of the land
• Displaying numeric values

• When the script’s scale is unimportant
• When the script’s scale must be preserved

• Displaying strings
• Labels on each bar
• Labels on last bar

• Debugging conditions
• Single conditions
• Compound conditions

• Debugging from inside functions
• Debugging from inside `for` loops

• Extracting a single value
• Using lines and labels
• Extracting multiple values

• Tips

Introduction
TradingView’s close integration between the Pine Script® Editor and charts allows for efficient and
interactive debugging of Pine Script® code. Once a programmer understands the most appropriate
technique to use in each situation, they will be able to debug scripts quickly and thoroughly. This
page demonstrates the most useful techniques to debug Pine Script® code.

If you are not yet familiar with Pine Script®’s execution model, it is important that you read the
Execution model page of this User Manual so you understand how your debugging code will
behave in the Pine Script® environment.

The lay of the land
Values plotted by Pine scripts can be displayed in four distinct places:

1. Next to the script’s name (controlled by the “Indicator Values” checkbox in the “Chart
settings/Status Line” tab).

2. In the script’s pane, whether your script is a chart overlay or in a separate pane.
3. In the scale (only displays the last bar’s value and is controlled by the “Indicator Last Value

Label” checkbox in the “Chart settings/Scale” tab).
4. In the Data Window (which you can bring up using the fourth icon down, to the right of your

chart).

Note the following in the preceding screenshot:

• The chart’s cursor is on the dataset’s first bar, where bar_index is zero. That value is
reflected next to the indicator’s name and in the Data Window. Moving your cursor on
other bars would update those values so they always represent the value of the plot on
that bar. This is a good way to inspect the value of a variable as the script’s execution

https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#tips
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#extracting-multiple-values
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#using-lines-and-labels
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#extracting-a-single-value
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#debugging-from-inside-for-loops
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#debugging-from-inside-functions
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#compound-conditions
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#single-conditions
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#debugging-conditions
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#labels-on-last-bar
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#labels-on-each-bar
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#displaying-strings
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#when-the-script-s-scale-must-be-preserved
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#when-the-script-s-scale-is-unimportant
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#displaying-numeric-values
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#the-lay-of-the-land
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#introduction

progresses from bar to bar.
• The title argument of our plot() call, “Bar Index”, is used as the value’s legend in the

Data Window.
• The precision of the values displayed in the Data Window is dependent on the chart

symbol’s tick value. You can modify it in two ways:
• By changing the value of the “Precision” field in the script’s “Settings/Style” tab.

You can obtain up to eight digits of precision using this method.
• By using the precision parameter in your script’s indicator() or strategy()

declaration statement. This method allows specifying up to 16 digits precision.
• The plot() call in our script plots the value of bar_index in the indicator’s pane, which shows

the increasing value of the variable.
• The scale of the script’s pane is automatically sized to accommodate the smallest and largest

values plotted by all plot() calls in the script.

Displaying numeric values

When the script’s scale is unimportant

The script in the preceding screenshot used the simplest way to inspect numerical values: a plot()
call, which plots a line corresponding to the variable’s value in the script’s display area. Our
example script plotted the value of the bar_index built-in variable, which contains the bar’s number,
a value beginning at zero on the dataset’s first bar and increased by one on each subsequent bar. We
used a plot() call to plot the variable to inspect because our script was not plotting anything else; we
were not preoccupied with preserving the scale for other plots to continue to plot normally. This is
the script we used:

//@version=5
indicator("Plot `bar_index`")
plot(bar_index, "Bar Index")

When the script’s scale must be preserved

Plotting values in the script’s display area is not always possible. When we already have other plots
going on and adding debugging plots of variables whose values fall outside the script’s plotting
boundaries would make the plots unreadable, another technique must be used to inspect values if we
want to preserve the scale of the other plots.

Suppose we want to continue inspecting the value of bar_index, but this time in a script where we
are also plotting RSI:

//@version=5
indicator("Plot RSI and `bar_index`")
r = ta.rsi(close, 20)
plot(r, "RSI", color.black)
plot(bar_index, "Bar Index")

Running the script on a dataset containing a large number of bars yields the following display:

where:

1. The RSI line in black is flat because it varies between zero and 100, but the indicator’s pane
is scaled to show the maximum value of bar_index, which is 25692.0000.

https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id5
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id4
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id3
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

2. The value of bar_index on the bar the cursor is on is displayed next to the indicator’s name,
and its blue plot in the script’s pane is flat.

3. The 25692.0000 value of bar_index shown in the scale represents its value on the last bar,
so the dataset contains 25693 bars.

4. The value of bar_index on the bar the cursor is on is also displayed in the Data Window,
along with that bar’s value for RSI just above it.

In order to preserve our plot of RSI while still being able to inspect the value or bar_index, we will
plot the variable using plotchar() like this:

//@version=5
indicator("Plot RSI and `bar_index`")
r = ta.rsi(close, 20)
plot(r, "RSI", color.black)
plotchar(bar_index, "Bar index", "", location.top)

where:

• Because the value of bar_index is no longer being plotted in the script’s pane, the pane’s
boundaries are now those of RSI, which displays normally.

• The value plotted using plotchar() is displayed next to the script’s name and in the Data
Window.

• We are not plotting a character with our plotchar() call, so the third argument is an empty
string (""). We are also specifying location.top as the location argument, so that we do
not put the symbol’s price in play in the calculation of the display area’s boundaries.

Displaying strings
Pine Script® labels must be used to display strings. Labels only appear in the script’s display area;
strings shown in labels do not appear in the Data Window or anywhere else.

Labels on each bar

The following script demonstrates the simplest way to repetitively draw a label showing the
symbol’s name:

//@version=5
indicator("Simple label", "", true)
label.new(bar_index, high, syminfo.ticker)

By default, only the last 50 labels will be shown on the chart. You can increase this amount up to a
maximum of 500 by using the max_labels_count parameter in your script’s indicator() or
strategy() declaration statement. For example:

indicator("Simple label", "", true, max_labels_count = 500)

Labels on last bar

As strings manipulated in Pine scripts often do not change bar to bar, the method most frequently
used to visualize them is to draw a label on the dataset’s last bar. Here, we use a function to create a

https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id8
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id7
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id6
https://www.tradingview.com/pine-script-reference/v5/#var_location%7Bdot%7Dtop
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index

label that only appears on the chart’s last bar. Our f_print() function has only one parameter,
the text string to be displayed:

//@version=5
indicator("print()", "", true)
print(txt) =>
 // Create label on the first bar.
 var lbl = label.new(bar_index, na, txt, xloc.bar_index, yloc.price,
color(na), label.style_none, color.gray, size.large, text.align_left)
 // On next bars, update the label's x and y position, and the text it
displays.
 label.set_xy(lbl, bar_index, ta.highest(10)[1])
 label.set_text(lbl, txt)

print("Multiplier = " + str.tostring(timeframe.multiplier) + "\nPeriod = " +
timeframe.period + "\nHigh = " + str.tostring(high))
print("Hello world!\n\n\n\n")

Note the following in our last code example:

• We use the print() function to enclose the label-drawing code. While the function is
called on each bar, the label is only created on the dataset’s first bar because of our use of
the var keyword when declaring the lbl variable inside the function. After creating it, we
only update the label’s x and y coordinates and its text on each successive bar. If we did not
update those values, the label would remain on the dataset’s first bar and would only display
the text string’s value on that bar. Lastly, note that we use ta.highest(10)[1] to
position the label vertically, By using the highest high of the previous 10 bars, we prevent
the label from moving during the realtime bar. You may need to adapt this y position in other
contexts.

• We call the print() function twice to show that if you make multiple calls because it
makes debugging multiple strings easier, you can superimpose their text by using the correct
amount of newlines (\n) to separate each one.

• We use the str.tostring() function to convert numeric values to a string for inclusion in the
text to be displayed.

Debugging conditions

Single conditions

Many methods can be used to display occurrences where a condition is met. This code shows six
ways to identify bars where RSI is smaller than 30:

//@version=5
indicator("Single conditions")
r = ta.rsi(close, 20)
rIsLow = r < 30
hline(30)

// Method #1: Change the plot's color.
plot(r, "RSI", rIsLow ? color.fuchsia : color.black)
// Method #2: Plot a character in the bottom region of the display.
plotchar(rIsLow, "rIsLow char at bottom", "▲", location.bottom, size =
size.small)
// Method #3: Plot a character on the RSI line.
plotchar(rIsLow ? r : na, "rIsLow char on line", "•", location.absolute,

https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id10
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id9
https://www.tradingview.com/pine-script-reference/v5/#fun_str%7Bdot%7Dtostring
https://www.tradingview.com/pine-script-reference/v5/#op_var

color.red, size = size.small)
// Method #4: Plot a shape in the top region of the display.
plotshape(rIsLow, "rIsLow shape", shape.arrowup, location.top)
// Method #5: Plot an arrow.
plotarrow(rIsLow ? 1 : na, "rIsLow arrow")
// Method #6: Change the background's color.
bgcolor(rIsLow ? color.new(color.green, 90) : na)

Note that:

• We define our condition in the rIsLow boolean variable and it is evaluated on each bar.
The r < 30 expression used to assign a value to the variable evaluates to true or false
(or na when r is na, as is the case in the first bars of the dataset).

• Method #1 uses a change in the color of the RSI plot on the condition. Whenever a plot’s
color changes, it colors the plot starting from the preceding bar.

• Method #2 uses plotchar() to plot an up triangle in the bottom part of the indicator’s display.
Using different combinations of positions and characters allows the simultaneous
identification of multiple conditions on a single bar. This is one of our preferred methods
to identify conditions on the chart.

• Method #3 also uses a plotchar() call, but this time the character is positioned on the RSI
line. In order to achieve this, we use location.absolute and Pine Script®’s ?: ternary
conditional operator to define a conditional expression where a y position is used only when
our rIsLow condition is true. When it is not true, na is used, so no character is displayed.

• Method #4 uses plotshape() to plot a blue up arrow in the top part of the indicator’s display
area when our condition is met.

• Method #5 uses plotarrow() to plot a green up arrow at the bottom of the display when our
condition is met.

• Method #6 uses bgcolor() to change the color of the background when our condition is met.
The ternary operator is used once again to evaluate our condition. It will return
color.green when rIsLow is true, and the na color (which does not color the
background) when rIsLow is false or na.

• Lastly, note how a boolean variable with a true value displays as 1 in the Data Window.
false values are denoted by a zero value.

Compound conditions

Programmers needing to identify situations where more than one condition is met must build
compound conditions by aggregating individual conditions using the and logical operator. Because
compound conditions will only perform as expected if their individual conditions trigger correctly,
you will save yourself many headaches if you validate the behavior of individual conditions before
using a compound condition in your code.

The state of multiple individual conditions can be displayed using a technique like this one, where
four individual conditions are used to build our bull compound condition:

//@version=5
indicator("Compound conditions")
periodInput = input.int(20)
bullLevelInput = input.int(55)

r = ta.rsi(close, periodInput)

// Condition #1.

https://www.tradingview.com/pine-script-reference/v5/#op_and
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id11
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#op_%7Bquestion%7D%7Bcolon%7D
https://www.tradingview.com/pine-script-reference/v5/#var_location%7Bdot%7Dabsolute
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar

rsiBull = r > bullLevelInput
// Condition #2.
hiChannel = ta.highest(r, periodInput * 2)[1]
aboveHiChannel = r > hiChannel
// Condition #3.
channelIsOld = hiChannel >= hiChannel[periodInput]
// Condition #4.
historyIsBull = math.sum(rsiBull ? 1 : -1, periodInput * 3) > 0
// Compound condition.
bull = rsiBull and aboveHiChannel and channelIsOld and historyIsBull

hline(bullLevelInput)
plot(r, "RSI", color.black)
plot(hiChannel, "High Channel")

plotchar(rsiBull ? bullLevelInput : na, "rIsBull", "1", location.absolute,
color.green, size = size.tiny)
plotchar(aboveHiChannel ? r : na, "aboveHiChannel", "2", location.absolute, size
= size.tiny)
plotchar(channelIsOld, "channelIsOld", "3", location.bottom, size = size.tiny)
plotchar(historyIsBull, "historyIsBull", "4", location.top, size = size.tiny)
bgcolor(bull ? not bull[1] ? color.new(color.green, 50) : color.new(color.green,
90) : na)

Note that:

• We use a plotchar() call to display each condition’s number, taking care to spread them over
the indicator’s y space so they don’t overlap.

• The first two plotchar() calls use absolute positioning to place the condition number so that
it helps us remember the corresponding condition. The first one which displays “1” when
RSI is higher than the user-defined bull level for example, positions the “1” on the bull level.

• We use two different shades of green to color the background: the brighter one indicates the
first bar where our compound condition becomes true, the lighter green identifies
subsequent bars where our compound condition continues to be true.

• While it is not always strictly necessary to assign individual conditions to a variable because
they can be used directly in boolean expressions, it makes for more readable code when you
assign a condition to a variable name that will remind you and your readers of what it
represents. Readability considerations should always prevail in cases like this one, where the
hit on performance of assigning conditions to variable names is minimal or null.

Debugging from inside functions
Variables in function are local to the function, so not available for plotting from the script’s global
scope. In this script we have written the hlca() function to calculate a weighed average:

//@version=5
indicator("Debugging from inside functions", "", true)
hlca() =>
 var float avg = na
 hlca = math.avg(high, low, close, nz(avg, close))
 avg := ta.sma(hlca, 20)

h = hlca()
plot(h)

We need to inspect the value of hlca in the function’s local scope as the function calculates, bar to

https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id12
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar

bar. We cannot access the hlca variable used inside the function from the script’s global scope. We
thus need another mechanism to pull that variable’s value from inside the function’s local scope,
while still being able to use the function’s result. We can use Pine Script®’s ability to have functions
return a tuple to gain access to the variable:

//@version=5
indicator("Debugging from inside functions", "", true)
hlca() =>
 var float avg = na
 instantVal = math.avg(high, low, close, nz(avg, close))
 avg := ta.sma(instantVal, 20)
 // Return two values instead of one.
 [avg, instantVal]

[h, instantVal] = hlca()
plot(h, "h")
plot(instantVal, "instantVal", color.black)

Contrary to global scope variables, array elements of globally defined arrays can be modified from
within functions. We can use this feature to write a functionally equivalent script:

//@version=5
indicator("Debugging from inside functions", "", true)
// Create an array containing only one float element.
instantValGlobal = array.new_float(1)
hlca() =>
 var float avg = na
 instantVal = math.avg(high, low, close, nz(avg, close))
 // Set the array's only element to the current value of `_instantVal`.
 array.set(instantValGlobal, 0, instantVal)
 avg := ta.sma(instantVal, 20)

h = hlca()
plot(h, "h")
// Retrieve the value of the array's only element which was set from inside the
function.
plot(array.get(instantValGlobal, 0), "instantValGlobal", color.black)

Debugging from inside `for` loops
Values inside for loops cannot be plotted using plot() calls in the loop. As in functions, such
variables are also local to the loop’s scope. Here, we explore three different techniques to inspect
variable values originating from for loops, starting from this code example, which calculates the
balance of bars in the lookback period which have a higher/lower true range value than the current
bar:

//@version=5
indicator("Debugging from inside `for` loops")
lookbackInput = input.int(20, minval = 0)

float trBalance = 0
for i = 1 to lookbackInput
 trBalance := trBalance + math.sign(ta.tr - ta.tr[i])

hline(0)
plot(trBalance)

https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id13

Extracting a single value

If we want to inspect the value of a variable at a single point in the loop, we can save it and plot it
once the loop is exited. Here, we save the value of tr in the val variable at the loop’s last iteration:

//@version=5
indicator("Debugging from inside `for` loops", max_lines_count = 500,
max_labels_count = 500)
lookbackInput = input.int(20, minval = 0)

float val = na
float trBalance = 0
for i = 1 to lookbackInput
 trBalance := trBalance + math.sign(ta.tr - ta.tr[i])
 if i == lookbackInput
 val := ta.tr[i]
hline(0)
plot(trBalance)
plot(val, "val", color.black)

Using lines and labels

When we want to extract values from more than one loop iteration we can use lines and labels. Here
we draw a line corresponding to the value of ta.tr used in each loop iteration. We also use a label to
display, for each line, the loop’s index and the line’s value. This gives us a general idea of the values
being used in each loop iteration:

//@version=5
indicator("Debugging from inside `for` loops", max_lines_count = 500,
max_labels_count = 500)
lookbackInput = input.int(20, minval = 0)

float trBalance = 0
for i = 1 to lookbackInput
 trBalance := trBalance + math.sign(ta.tr - ta.tr[i])
 line.new(bar_index[1], ta.tr[i], bar_index, ta.tr[i], color = color.black)
 label.new(bar_index, ta.tr[i], str.tostring(i) + "•" +
str.tostring(ta.tr[i]), style = label.style_none, size = size.small)

hline(0)
plot(trBalance)

Note that:

• To show more detail, the scale in the preceding screenshot has been manually expanded by
clicking and dragging the scale area.

• We use max_lines_count = 500, max_labels_count = 500 in our
indicator() declaration statement to display the maximum number of lines and labels.

• Each loop iteration does not necessarily produce a distinct ta.tr value, which is why we may
not see 20 distinct lines for each bar.

• If we wanted to show only one level, we could use the same technique while isolating a
specific loop iteration as we did in the preceding example.

https://www.tradingview.com/pine-script-reference/v5/#var_ta%7Bdot%7Dtr
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#var_ta%7Bdot%7Dtr
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id15
https://www.tradingview.com/pine-script-reference/v5/#var_ta%7Bdot%7Dtr
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id14

Extracting multiple values

We can also extract multiple values from loop iterations by building a single string which we will
display using a label after the loop executes:

//@version=5
indicator("Debugging from inside `for` loops", max_lines_count = 500,
max_labels_count = 500)
lookbackInput = input.int(20, minval = 0)

string = ""
float trBalance = 0
for i = 1 to lookbackInput
 trBalance := trBalance + math.sign(ta.tr - ta.tr[i])
 string := string + str.tostring(i, "00") + "•" + str.tostring(ta.tr[i]) +
"\n"

label.new(bar_index, 0, string, style = label.style_none, size = size.small,
textalign = text.align_left)
hline(0)
plot(trBalance)

Note that:

• The scale in the preceding screenshot has been manually expanded by clicking and dragging
the scale area so the content of the indicator’s display area content could be moved vertically
to show only its relevant part.

• We use str.tostring(i, "00") to force the display of the loop’s index to zero-
padded two digits so they align neatly.

When loops with numerous iterations make displaying all their values impractical, you can sample a
subset of the iterations. This code uses the % (modulo) operator to include values from every
second loop iteration:

for i = 1 to i_lookBack
 lowerRangeBalance := lowerRangeBalance + math.sign(ta.tr - ta.tr[i])
 if i % 2 == 0
 string := string + str.tostring(i, "00") + "•" + str.tostring(ta.tr[i])
+ "\n"

Tips
The two techniques we use most frequently to debug our Pine Script® code are:

plotchar(v, "v", "", location.top, size = size.tiny)

to plot variables of type float, int or bool in the indicator’s values and the Data Window, and the
one-line version of our print() function to debug strings:

print(txt) => var _label = label.new(bar_index, na, txt, xloc.bar_index,
yloc.price, color(na), label.style_none, color.gray, size.large,
text.align_left), label.set_xy(_label, bar_index, ta.highest(10)[1]),
label.set_text(_label, txt)
print(stringName)

As we use AutoHotkey for Windows to speed repetitive tasks, we include these lines in our
AutoHotkey script (this is not Pine Script® code):

https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id17
https://www.tradingview.com/pine-script-reference/v5/#op_%7Bpercent%7D
https://www.tradingview.com/pine-script-docs/en/v5/writing/Debugging.html#id16

; ————— This is AHK code, not Pine Script®. —————
^+f:: SendInput plotchar(^v, "^v", "", location.top, size = size.tiny){Return}
^+p:: SendInput print(txt) => var lbl = label.new(bar_index, na, txt,
xloc.bar_index, yloc.price, color(na), label.style_none, color.gray, size.large,
text.align_left), label.set_xy(lbl, bar_index, highest(10)[1]),
label.set_text(lbl, txt)`nprint(){Left}

The second line will type a debugging plotchar() call including an expression or variable name
previously copied to the clipboard when we use ctrl + shift + f. Copying the
variableName variable name or the close > open conditional expression to the clipboard
and hitting ctrl + shift + f will, respectively, yield:

plotchar(variableName, "variableName", "", location.top, size = size.tiny)
plotchar(close > open, "close > open", "", location.top, size = size.tiny)

The third line triggers on ctrl + shift + p. It types our one-line print() function in a script
and on a second line, an empty call to the function with the cursor placed so all that’s left to do is
type the string we want to display:

print(txt) => var lbl = label.new(bar_index, na, txt, xloc.bar_index,
yloc.price, color(na), label.style_none, color.gray, size.large,
text.align_left), label.set_xy(lbl, bar_index, ta.highest(10)[1]),
label.set_text(lbl, txt)
print()

Note: AutoHotkey works only on Windows systems. Keyboard Maestro or others can be substituted
on Apple systems.

Publishing scripts
• Script visibility and access

• When you publish a script
• Visibility

• Public
• Private

• Access
• Open
• Protected
• Invite-only

• Preparing a publication
• Publishing a script
• Updating a publication

Programmers who wish to share their Pine scripts with other traders can publish them.

Note

If you write scripts for your personal use, there is no need to publish them; you can save them in the
Pine Script® Editor and use the “Add to Chart” button to add your script to your chart.

https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#updating-a-publication
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#publishing-a-script
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#preparing-a-publication
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#invite-only
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#protected
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#open
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#access
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#private
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#public
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#visibility
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#when-you-publish-a-script
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#script-visibility-and-access
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar

Script visibility and access
When you publish a script, you control its visibility and access:

• Visibility is controlled by choosing to publish publicly or privately. See How do private
ideas and scripts differ from public ones? in the Help Center for more details. Publish
publicly when you have written a script you think can be useful to TradingViewers. Public
scripts are subject to moderation. To avoid moderation, ensure your publication complies
with our House Rules and Script Publishing Rules. Publish privately when you don’t want
your script visible to all other users, but want to share it with a few friends.

• Access determines if users will see your source code, and how they will be able to use your
script. There are three access types: open, protected (reserved to paid accounts) or invite-
only (reserved to Premium accounts). See What are the different types of published scripts?
in the Help Center for more details.

When you publish a script

• The publication’s title is determined by the argument used for the title parameter in the
script’s indicator() or strategy() declaration statement. That title is also used when
TradingViewers search for script names.

• The name of your script on the chart will be the argument used for the shorttitle
parameter in the script’s indicator() or strategy() declaration statement, or the title argument
in library().

• Your script must have a description explaining what your script does and how to use it.
• The chart you are using when you publish will become visible in your publication, including

any other scripts or drawings on it. Remove unrelated scripts or drawings from your chart
before publishing your script.

• Your script’s code can later be updated. Each update can include release notes which will
appear, dated, under your original description.

• Scripts can be liked, shared, commented on or reported by other users.
• Your published scripts appear under the “SCRIPTS” tab of your user profile.
• A script widget and a script page are created for your script. The script widget is your

script’s placeholder showing in script feeds on the platform. It contains your script’s title,
chart and the first few lines of your description. When users click on your script widget, the
script’s page opens. It contains all the information relating to your script.

Visibility

Public

When you publish a public script:

• Your script will be inluded in our Community Scripts where it becomes visible to the
millions of TradingViewers on all internationalized versions of the site.

• Your publication must comply with House Rules and Script Publishing Rules.
• If your script is an invite-only script, you must comply with our Vendor Requirements.
• It becomes accessible through the search functions for scripts.
• You will not be able to edit your original description or its title, nor change its public/private

visibility, nor its access type (open-source, protected, invite-only).
• You will not be able to delete your publication.

https://www.tradingview.com/support/solutions/43000549951
https://www.tradingview.com/support/solutions/43000590599
https://www.tradingview.com/support/solutions/43000591638
https://www.tradingview.com/scripts/
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#id4
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#id3
https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#id2
https://www.tradingview.com/support/solutions/43000482573
https://www.tradingview.com/support/solutions/43000590599
https://www.tradingview.com/support/solutions/43000591638
https://www.tradingview.com/support/solutions/43000548335
https://www.tradingview.com/support/solutions/43000548335
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#id1

Private

When you publish a private script:

• It will not be visible to other users unless you share its url with them.
• It is visible to you from your user profile’s “SCRIPTS” tab.
• Private scripts are identifiable by the “X” and “lock” icons in the top-right of their widget.

The “X” is used to delete it.
• It is not moderated, unless you sell access to it or make it available publicly, as it is then no

longer “private”.
• You can update its original description and title.
• You cannot link to or mentioned it from any public TradingView content (ideas, script

descriptions, comments, chats, etc.).
• It is not accessible through the search functions for scripts.

Access

Public or private scripts can be published using one of three access types: open, protected or invite-
only. The access type you can select from will vary with the type of account you hold.

Open

The Pine Script® code of scripts published open is visible to all users. Open-source scripts on
TradingView use the Mozilla license by default, but you may choose any license you want. You can
find information on licensing at GitHub.

Protected

The code of protected scripts is hidden from view and no one but its author can access it. While the
script’s code is not accessible, protected scripts can be used freely by any user. Only Pro, Pro+ or
Premium accounts may publish public protected scripts.

Invite-only

The invite-only access type protects both the script’s code and its use. The publisher of an invite-
only script must explicitly grant access to individual users. Invite-only scripts are mostly used by
script vendors providing paid access to their scripts. Only Premium accounts can publish invite-
only scripts, and they must comply with our Vendor Requirements.

TradingView does not benefit from script sales. Transactions concerning invite-only scripts are
strictly between users and vendors; they do not involve TradingView.

Public invite-only scripts are the only scripts for which vendors are allowed to ask for payment on
TradingView.

On their invite-only script’s page, authors will see a “Manage Access” button. The “Manage
Access” window allows authors to control who has access to their script.

Preparing a publication
1. Even if you intend to publish publicly, it is always best to start with a private publication

because you can use it to validate what your final publication will look like. You can edit the
title, description, code or chart of private publications, and contrary to public scripts, you

https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#id10
https://www.tradingview.com/support/solutions/43000549951
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#id9
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#id8
https://help.github.com/articles/licensing-a-repository/
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#id7
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#id6
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#id5

can delete private scripts when you don’t need them anymore, so they are the perfect way to
practice before sharing a script publicly. You can read more about preparing script
descriptions in the How We Write and Format Script Descriptions publication.

2. Prepare your chart. Load your script on the chart and remove other scripts or drawings that
won’t help users understand your script. Your script’s plots should be easy to identify on the
chart that will be published with it.

3. Load your code in the Pine Editor if it isn’t already. In the Editor, click the “Publish Script”

button:
4. A popup appears to remind you that if you publish publicly, it’s important that your

publication comply with House Rules. Once you’re through the popup, place your
description in the field below the script’s title. The default title proposed for your publication
is the title field from your script’s code. It is always best to use that title; it makes it
easier for users to search for your script if it is public. Select the visibility of your
publication. We want to publish a private publication, so we check the “Private Script”

checkbox at the bottom-right of the “Publish Script” window:
5. Select the access type you want for your script: Open, Protected or Invite-only. We have

selected “Open” for open-source.
6. Select the appropriate categories for your script (at least one is mandatory) and enter

optional custom tags.
7. Click the “Publish Private Script” button in the lower-right of the window. When the

publication is complete, your published script’s page will appear. You are done! You can
confirm the publication by going to your User Profile and viewing your “SCRIPTS” tab.
From there, you will be able to open your script’s page and edit your private publication by
using the “Edit” button in the top-right of your script’s page. Note that you can also update
private publications, just like you can public ones. If you want to share your private
publication with a friend, privately send her the url from your script’s page. Remember you
are not allowed to share links to private publications in public TradingView content.

Publishing a script
Whether you intend to publish privately or publicly, first follow the steps in the previous section. If
you intend to publish privately, you will be done. If you intend to publish publicly and are satisfied
with the preparatory process of validating your private publication, follow the same steps as above
but do not check the “Private Script” checkbox and click the “Publish Public Script” button at the
bottom-right of the “Publish Script” page.

When you publish a new public script, you have a 15-minute window to make changes to your
description or delete the publication. After that you will no longer be able to change your
publication’s title, description, visiblity or access type. If you make an error, send a message to the
PineCoders moderator account; they moderate script publications and will help.

Updating a publication
You can update both public or private script publications. When you update a script, its code must
be different than the previously published version’s code. You can add release notes with your
update. They will appear after your script’s original description in the script’s page.

By default, the chart used when you update will replace the previous chart in your script’s page.

https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#id12
https://www.tradingview.com/u/PineCoders/
https://www.tradingview.com/pine-script-docs/en/v5/writing/Publishing.html#id11
https://www.tradingview.com/chart/SSP/aOYEvBxw-How-We-Write-and-Format-Script-Descriptions/

You can choose not to update your script page’s chart, however. Note that while you can update the
chart displayed in the script’s page, the chart from the script’s widget will not update.

In the same way you can validate a public publication by first publishing a private script, you can
also validate an update on a private publication before proceeding with it on your public one. The
process of updating a published script is the same for public and private scripts.

If you intend to update both the code and chart of your published script, prepare your chart the same
way you would for a new publication. In the following example, we will not be updating the
publication’s chart:

1. As you would for a new publication, load your script in the Editor and click the “Publish
Script” button.

2. Once in the “Publish Script” window, select the “Update Existing Script” button. Then select
the script to update from the “Choose script” dropdown menu:

3. Enter your release notes in the text field. The differences in your code are highlighted below
your release notes.

4. We do not want to update the publication’s chart, so we check the “Don’t update the chart”
checkbox:

5. Click the “Publish New Version” button. You’re done.

Introduction
As is mentioned in our Welcome page:

Because each script uses computational resources in the cloud, we must impose limits
in order to share these resources fairly among our users. We strive to set as few limits
as possible, but will of course have to implement as many as needed for the platform to

https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html#pagewelcometopine

run smoothly. Limitations apply to the amount of data requested from additional
symbols, execution time, memory usage and script size.

If you develop complex scripts using Pine Script®, sooner or later you will run into some of the
limitations we impose. This section provides you with an overview of the limitations that you may
encounter. There are currently no means for Pine Script® programmers to get data on the resources
consumed by their scripts. We hope this will change in the future.

In the meantime, when you are considering large projects, it is safest to make a proof of concept in
order to assess the probability of your script running into limitations later in your project.

Here are the limits imposed in the Pine Script® environment.

Time

Script compilation

Scripts must compile before they are executed on charts. Compilation occurs when you save a script
from the editor or when you add a script to the chart. A two-minute limit is imposed on compilation
time, which will depend on the size and complexity of your script, and whether or not a cached
version of a previous compilation is available. When a compile exceeds the two-minute limit, a
warning is issued. Heed that warning by shortening your script because after three consecutives
warnings a one-hour ban on compilation attempts is enforced. The first thing to consider when
optimizing code is to avoid repetitions by using functions to encapsulate oft-used segments, and call
functions instead of repeating code.

Script execution

Once a script is compiled it can be executed. See the Events triggering the execution of a script for a
list of the events triggering the execution of a script. The time allotted for the script to execute on all
bars of a dataset varies with account types. The limit is 20 seconds for basic accounts, 40 for others.

Loop execution

The execution time for any loop on any single bar is limited to 500 milliseconds. The outer loop of
embedded loops counts as one loop, so it will time out first. Keep in mind that even though a loop
may execute under the 500 ms time limit on a given bar, the time it takes to execute on all the
dataset’s bars may nonetheless cause your script to exceed the total execution time limit. For
example, the limit on total execution time will make it impossible for you script to execute a 400 ms
loop on each bar of a 20,000-bar dataset because your script would then need 8000 seconds to
execute.

Chart visuals

Plot limits

A maximum of 64 plot counts are allowed per script. The functions that generate plot counts are:

• plot()
• plotarrow()
• plotbar()
• plotcandle()

https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-reference/v5/#fun_plotbar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id7
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id6
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/language/Execution_model.html#pageexecutionmodel-events
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id4
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id3
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id2

• plotchar()
• plotshape()
• alertcondition()
• bgcolor()
• fill(), but only if its color is of the series form.

The following functions do not generate plot counts:

• hline()
• line.new()
• label.new()
• table.new()
• box.new()

One function call can generate up to seven plot counts, depending on the function and how it is
called. When your script exceeds the maximum of 64 plot counts, the runtime error message will
display the plot count generated by your script. Once you reach that point, you can determine how
many plot counts a function call generates by commenting it out in a script. As long as your script
still throws an error, you will be able to see how the actual plot count decreases after you have
commented out a line.

The following example shows different function calls and the number of plot counts each one will
generate:

//@version=5
indicator("Plot count example")

bool isUp = close > open
color isUpColor = isUp ? color.green : color.red
bool isDn = not isUp
color isDnColor = isDn ? color.red : color.green

// Uses one plot count each.
p1 = plot(close, color = color.white)
p2 = plot(open, color = na)

// Uses two plot counts for the `close` and `color` series.
plot(close, color = isUpColor)

// Uses one plot count for the `close` series.
plotarrow(close, colorup = color.green, colordown = color.red)

// Uses two plot counts for the `close` and `colorup` series.
plotarrow(close, colorup = isUpColor)

// Uses three plot counts for the `close`, `colorup`, and the `colordown`
series.
plotarrow(close - open, colorup = isUpColor, colordown = isDnColor)

// Uses four plot counts for the `open`, `high`, `low`, and `close` series.
plotbar(open, high, low, close, color = color.white)

// Uses five plot counts for the `open`, `high`, `low`, `close`, and `color`
series.
plotbar(open, high, low, close, color = isUpColor)

// Uses four plot counts for the `open`, `high`, `low`, and `close` series.
plotcandle(open, high, low, close, color = color.white, wickcolor = color.white,
bordercolor = color.purple)

// Uses five plot counts for the `open`, `high`, `low`, `close`, and `color`

https://www.tradingview.com/pine-script-reference/v5/#fun_box%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_table%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_label%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_line%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#op_series
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar

series.
plotcandle(open, high, low, close, color = isUpColor, wickcolor = color.white,
bordercolor = color.purple)

// Uses six plot counts for the `open`, `high`, `low`, `close`, `color`, and
`wickcolor` series.
plotcandle(open, high, low, close, color = isUpColor, wickcolor = isUpColor ,
bordercolor = color.purple)

// Uses seven plot counts for the `open`, `high`, `low`, `close`, `color`,
`wickcolor`, and `bordercolor` series.
plotcandle(open, high, low, close, color = isUpColor, wickcolor = isUpColor ,
bordercolor = isUp ? color.lime : color.maroon)

// Uses one plot count for the `close` series.
plotchar(close, color = color.white, text = "|", textcolor = color.white)

// Uses two plot counts for the `close`` and `color` series.
plotchar(close, color = isUpColor, text = "—", textcolor = color.white)

// Uses three plot counts for the `close`, `color`, and `textcolor` series.
plotchar(close, color = isUpColor, text = "O", textcolor = isUp ? color.yellow :
color.white)

// Uses one plot count for the `close` series.
plotshape(close, color = color.white, textcolor = color.white)

// Uses two plot counts for the `close` and `color` series.
plotshape(close, color = isUpColor, textcolor = color.white)

// Uses three plot counts for the `close`, `color`, and `textcolor` series.
plotshape(close, color = isUpColor, textcolor = isUp ? color.yellow :
color.white)

// Uses one plot count.
alertcondition(close > open, "close > open", "Up bar alert")

// Uses one plot count.
bgcolor(isUp ? color.yellow : color.white)

// Uses one plot count for the `color` series.
fill(p1, p2, color = isUpColor)

This example generates a plot count of 56. If we were to add two more instances of the last call to
plotcandle(), the script would throw an error stating that the script now uses 70 plot counts, as each
additional call to plotcandle() generates seven plot counts, and 56 + (7 * 2) is 70.

Line, box, and label limits

Contrary to plots which can cover the entire dataset, by default, only the last 50 lines drawn by a
script are visible on charts. The same goes for boxes and labels. You can increase the quantity of
drawing objects preserved on charts up to a maximum of 500 by using the max_lines_count,
max_boxes_count or max_labels_count parameters in the indicator() or strategy()
declaration statements.

In this example we set the maximum quantity of last labels shown on the chart to 100:

//@version=5
indicator("Label limits example", max_labels_count = 100, overlay = true)
label.new(bar_index, high, str.tostring(high, format.mintick))

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id8
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle

It’s important to note that when you set any of the attributes of a drawing object to na, it still counts
as a drawing on the chart and thus contributes to a script’s drawing totals. To demonstrate this, the
following script draws a “Buy” and “Sell” label on each bar with x values determined by the
longCondition and shortCondition variables. The “Buy” label’s x value is na when the
bar index is even, and the “Sell” label’s x value is na when the bar index is odd. Although the
max_labels_count is 10 in this example, we can see that the script displays fewer than ten
labels on the chart since the ones with na values also count toward the total:

//@version=5

// Approximate maximum number of label drawings
MAX_LABELS = 10

indicator("labels with na", overlay = false, max_labels_count = MAX_LABELS)

// Add background color for the last MAX_LABELS bars.
bgcolor(bar_index > last_bar_index - MAX_LABELS ? color.new(color.green, 80) :
na)

longCondition = bar_index % 2 != 0
shortCondition = bar_index % 2 == 0

// Add "Buy" and "Sell" labels on each new bar.
label.new(longCondition ? bar_index : na, 0, text = "Buy", color =
color.new(color.green, 0), style = label.style_label_up)
label.new(shortCondition ? bar_index : na, 0, text = "Sell", color =
color.new(color.red, 0), style = label.style_label_down)

plot(longCondition ? 1 : 0)
plot(shortCondition ? 1 : 0)

If we want the script to display the desired number of labels, we need to eliminate the ones with na
x values so that they don’t add to the script’s label count. This example conditionally draws the
“Buy” and “Sell” labels rather than always drawing them and setting their attributes to na on
alternating bars:

//@version=5

// Approximate maximum number of label drawings
MAX_LABELS = 10

indicator("conditional labels", overlay = false, max_labels_count = MAX_LABELS)

// Add background color for the last MAX_LABELS bars.
bgcolor(bar_index > last_bar_index - MAX_LABELS ? color.new(color.green, 80) :
na)

longCondition = bar_index % 2 != 0
shortCondition = bar_index % 2 == 0

// Add a "Buy" label when `longCondition` is true.
if longCondition
 label.new(bar_index, 0, text = "Buy", color = color.new(color.green, 0),
style = label.style_label_up)
// Add a "Sell" label when `shortCondition` is true.

if shortCondition
 label.new(bar_index, 0, text = "Sell", color = color.new(color.red, 0),
style = label.style_label_down)

plot(longCondition ? 1 : 0)
plot(shortCondition ? 1 : 0)

Table limits

A maximum of nine tables can be displayed by a script, one for each of the possible locations:
position.bottom_center, position.bottom_left, position.bottom_right, position.middle_center,
position.middle_left, position.middle_right, position.top_center, position.top_left, or
position.top_right. If you place two tables in the same position, only the most recently added table
will be visible.

`request.*()` calls

Number of calls

A script cannot make more than 40 calls to request.*() functions. All instances of calls to these
functions are counted, even if they are included in code blocks or functions that are never actually
used in the script’s logic. The functions counting towards this limit are: request.security(),
request.security_lower_tf(), request.quandl(), request.financial(), request.dividends(),
request.earnings() and request.splits().

Intrabars

When accessing lower timeframes, with request.security() or request.security_lower_tf(), a
maximum of 100,000 intrabars can be used in calculations.

The quantity of chart bars covered with 100,000 intrabars will vary with the ratio of the chart’s
timeframe to the lower timeframe used, and with the average number of intrabars contained in each
chart bar. For example, when using a 1min lower timeframe, chart bars at the 60min timeframe of
an active 24x7 market will usually contain 60 intrabars each. Because 100,000 / 60 = 1666.67, the
quantity of chart bars covered by the 100,000 intrabars will typically be 1666. On markets where
60min chart bars do not always contain 60 1min intrabars, more chart bars will be covered.

Tuple element limit

All the request.*() functions in one script taken together cannot return more than 127 tuple
values. Below we have an example showing what can cause this error and how to work around it:

//@version=5
indicator("Tuple values error")

// CAUSES ERROR:
[v1, v2, v3,...] = request.security(syminfo.tickerid, "1D", [s1, s2, s3,...])

// Works fine:
type myType
 int v1
 int v2
 int v3
 ...

myObj = request.security(syminfo.tickerid, "1D", myType.new())

https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id13
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id12
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsplits
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dearnings
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Ddividends
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dfinancial
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dquandl
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id11
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id10
https://www.tradingview.com/pine-script-reference/v5/#var_position%7Bdot%7Dtop_right
https://www.tradingview.com/pine-script-reference/v5/#var_position%7Bdot%7Dtop_left
https://www.tradingview.com/pine-script-reference/v5/#var_position%7Bdot%7Dtop_center
https://www.tradingview.com/pine-script-reference/v5/#var_position%7Bdot%7Dmiddle_right
https://www.tradingview.com/pine-script-reference/v5/#var_position%7Bdot%7Dmiddle_left
https://www.tradingview.com/pine-script-reference/v5/#var_position%7Bdot%7Dmiddle_center
https://www.tradingview.com/pine-script-reference/v5/#var_position%7Bdot%7Dbottom_right
https://www.tradingview.com/pine-script-reference/v5/#var_position%7Bdot%7Dbottom_left
https://www.tradingview.com/pine-script-reference/v5/#var_position%7Bdot%7Dbottom_center
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id9

Note that:

• In this example, we have a request.security() function with at least three values
in our tuple, and we could either have more than 127 values in our tuple above
or more than 127 values between multiple request.security() functions to throw
this error.

• We get around the error by simply creating a User-defined object that can hold
the same values without throwing an error.

• Using the myType.new() function is functionally the same as listing the same
values in our [s1, s2, s3,...] tuple.

Script size and memory

Compiled tokens

Before a script is executed, it is compiled into a tokenized Intermediate Language (IL). Using an IL
allows Pine Script® to accommodate longer scripts by applying various optimizations before it is
executed. The compiled form of indicators and strategies is limited to 68,000 tokens; libraries have
a limit of 1 million tokens. There is no way to inspect the number of tokens created during
compilation; you will only know your script exceeds the limit when the compiler reaches it.

Replacing code repetitions with function calls and using libraries to offload some of the workload
are the most efficient ways to decrease the number of tokens your compiled script will generate.

The size of variable names and comments do not affect the number of compiled tokens.

Local blocks

Local blocks are segments of indented code used in function definitions or in if, switch, for or while
structures, which allow for one or more local blocks.

Scripts are limited to 500 local blocks.

Variables

A maximum of 1000 variables are allowed per scope. Pine scripts always contain one global scope,
and can contain zero or more local scopes. Local scopes are created by indented code such as can be
found in functions or if, switch, for or while structures, which allow for one or more local blocks.
Each local block counts as one local scope.

The branches of a conditional expression using a ?: ternary operator do not count as local blocks.

Collections

Pine Script® collections (arrays, matrices, and maps) can have a maximum of 100,000 elements.
Each key-value pair in a map contains two elements, meaning maps can contain a maximum of
50,000 key-value pairs.

Other limitations

Maximum bars back

References to past values using the [] history-referencing operator are dependent on the size of the

https://www.tradingview.com/pine-script-reference/v5/#op_op_[]
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id20
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id19
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps
https://www.tradingview.com/pine-script-docs/en/v5/language/Maps.html#pagemaps
https://www.tradingview.com/pine-script-docs/en/v5/language/Matrices.html#pagematrices
https://www.tradingview.com/pine-script-docs/en/v5/language/Arrays.html#pagearrays
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id18
https://www.tradingview.com/pine-script-reference/v5/#op_%7Bquestion%7D%7Bcolon%7D
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id17
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id16
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id15
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id14
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity
https://www.tradingview.com/pine-script-reference/v5/#fun_request%7Bdot%7Dsecurity

historical buffer maintained by the Pine Script® runtime, which is limited to a maximum of 5000
bars. This Help Center page discusses the historical buffer and how to change its size using either
the max_bars_back parameter or the max_bars_back() function.

Maximum bars forward

When positioning drawings using xloc.bar_index, it is possible to use bar index values greater
than that of the current bar as x coordinates. A maximum of 500 bars in the future can be referenced.

This example shows how we use the maxval parameter in our input.int() function call to cap the
user-defined number of bars forward we draw a projection line so that it never exceeds the limit:

//@version=5
indicator("Max bars forward example", overlay = true)

// This function draws a `line` using bar index x-coordinates.
drawLine(bar1, y1, bar2, y2) =>
 // Only execute this code on the last bar.
 if barstate.islast
 // Create the line only the first time this function is executed on the
last bar.
 var line lin = line.new(bar1, y1, bar2, y2, xloc.bar_index)
 // Change the line's properties on all script executions on the last
bar.
 line.set_xy1(lin, bar1, y1)
 line.set_xy2(lin, bar2, y2)

// Input determining how many bars forward we draw the `line`.
int forwardBarsInput = input.int(10, "Forward Bars to Display", minval = 1,
maxval = 500)

// Calculate the line's left and right points.
int leftBar = bar_index[2]
float leftY = high[2]
int rightBar = leftBar + forwardBarsInput
float rightY = leftY + (ta.change(high)[1] * forwardBarsInput)

// This function call is executed on all bars, but it only draws the `line` on
the last bar.
drawLine(leftBar, leftY, rightBar, rightY)

Chart bars

The number of bars appearing on charts is dependent on the amount of historical data available for
the chart’s symbol and timeframe, and on the type of account you hold. When the required historical
date is available, the minimum number of chart bars is:

• 20,000 bars for the Premium plan.
• 10,000 bars for Pro and Pro+ plans.
• 5000 bars for other plans.

Trade orders in backtesting

A maximum of 9000 orders can be placed when backtesting strategies. When using Deep
Backtesting, the limit is 200,000.

https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id23
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id22
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dint
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#id21
https://www.tradingview.com/pine-script-reference/v5/#fun_max_bars_back
https://www.tradingview.com/support/solutions/43000587849
https://www.tradingview.com/

FAQ
• Get real OHLC price on a Heikin Ashi chart
• Get non-standard OHLC values on a standard chart
• Plot arrows on the chart
• Plot a dynamic horizontal line
• Plot a vertical line on condition
• Access the previous value
• Get a 5-days high
• Count bars in a dataset
• Enumerate bars in a day
• Find the highest and lowest values for the entire dataset
• Query the last non-na value

Get real OHLC price on a Heikin Ashi chart
Suppose, we have a Heikin Ashi chart (or Renko, Kagi, PriceBreak etc) and we’ve added a Pine
script on it:

//@version=5
indicator("Visible OHLC", overlay=true)
c = close
plot(c)

You may see that variable c is a Heikin Ashi close price which is not the same as real OHLC price.
Because close built-in variable is always a value that corresponds to a visible bar (or candle) on
the chart.

So, how do we get the real OHLC prices in Pine Script® code, if current chart type is non-standard?
We should use request.security function in combination with ticker.new function. Here
is an example:

//@version=5
indicator("Real OHLC", overlay = true)
t = ticker.new(syminfo.prefix, syminfo.ticker)
realC = request.security(t, timeframe.period, close)
plot(realC)

In a similar way we may get other OHLC prices: open, high and low.

Get non-standard OHLC values on a standard chart
Backtesting on non-standard chart types (e.g. Heikin Ashi or Renko) is not recommended because
the bars on these kinds of charts do not represent real price movement that you would encounter
while trading. If you want your strategy to enter and exit on real prices but still use Heikin Ashi-
based signals, you can use the same method to get Heikin Ashi values on a regular candlestick
chart:

//@version=5
strategy("BarUpDn Strategy", overlay = true, default_qty_type =
strategy.percent_of_equity, default_qty_value = 10)
maxIdLossPcntInput = input.float(1, "Max Intraday Loss(%)")
strategy.risk.max_intraday_loss(maxIdLossPcntInput, strategy.percent_of_equity)
needTrade() => close > open and open > close[1] ? 1 : close < open and open <
close[1] ? -1 : 0

https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#id2
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#query-the-last-non-na-value
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#find-the-highest-and-lowest-values-for-the-entire-dataset
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#enumerate-bars-in-a-day
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#count-bars-in-a-dataset
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#get-a-5-days-high
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#access-the-previous-value
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#plot-a-vertical-line-on-condition
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#plot-a-dynamic-horizontal-line
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#plot-arrows-on-the-chart
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#get-non-standard-ohlc-values-on-a-standard-chart
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#get-real-ohlc-price-on-a-heikin-ashi-chart

trade = request.security(ticker.heikinashi(syminfo.tickerid), timeframe.period,
needTrade())
if trade == 1
 strategy.entry("BarUp", strategy.long)
if trade == -1
 strategy.entry("BarDn", strategy.short)

Plot arrows on the chart
You may use plotshape with style shape.arrowup and shape.arrowdown:

//@version=5
indicator('Ex 1', overlay = true)
condition = close >= open
plotshape(condition, color = color.lime, style = shape.arrowup, text = "Buy")
plotshape(not condition, color = color.red, style = shape.arrowdown, text =
"Sell")

You may use the plotchar function with any unicode character:

//@version=5
indicator('buy/sell arrows', overlay = true)
condition = close >= open
plotchar(not condition, char='↓', color = color.lime, text = "Buy")
plotchar(condition, char='↑', location = location.belowbar, color = color.red,
text = "Sell")

Plot a dynamic horizontal line
There is the function hline in Pine Script®, but it is limited to only plot a constant value. Here is a
simple script with a workaround to plot a changing hline:

//@version=5
indicator("Horizontal line", overlay = true)
plot(close[10], trackprice = true, offset = -9999)
// `trackprice = true` plots horizontal line on close[10]
// `offset = -9999` hides the plot
plot(close, color = #FFFFFFFF) // forces display

Plot a vertical line on condition
//@version=5
indicator("Vertical line", overlay = true, scale = scale.none)
// scale.none means do not resize the chart to fit this plot
// if the bar being evaluated is the last baron the chart (the most recent bar),
then cond is true
cond = barstate.islast
// when cond is true, plot a histogram with a line with height value of
100,000,000,000,000,000,000.00
// (10 to the power of 20)
// when cond is false, plot no numeric value (nothing is plotted)
// use the style of histogram, a vertical bar

https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#id4
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#id3

plot(cond ? 10e20 : na, style = plot.style_histogram)

Access the previous value
//@version=5
//...
s = 0.0
s := nz(s[1]) // Accessing previous values
if (condition)
 s := s + 1

Get a 5-days high
Lookback 5 days from the current bar, find the highest bar, plot a star character at that price level
above the current bar

//@version=5
indicator("High of last 5 days", overlay = true)

// Milliseconds in 5 days: millisecs * secs * mins * hours * days
MS_IN_5DAYS = 1000 * 60 * 60 * 24 * 5

// The range check begins 5 days from the current time.
leftBorder = timenow - time < MS_IN_5DAYS
// The range ends on the last bar of the chart.
rightBorder = barstate.islast

// ————— Keep track of highest `high` during the range.
// Intialize `maxHi` with `var` on bar zero only.
// This way, its value is preserved, bar to bar.
var float maxHi = na
if leftBorder
 if not leftBorder[1]
 // Range's first bar.
 maxHi := high
 else if not rightBorder
 // On other bars in the range, track highest `high`.
 maxHi := math.max(maxHi, high)

// Plot level of the highest `high` on the last bar.
plotchar(rightBorder ? maxHi : na, "Level", "—", location.absolute, size =
size.normal)
// When in range, color the background.
bgcolor(leftBorder and not rightBorder ? color.new(color.aqua, 70) : na)

Count bars in a dataset
Get a count of all the bars in the loaded dataset. Might be useful for calculating flexible lookback
periods based on number of bars.

//@version=5
indicator("Bar Count", overlay = true, scale = scale.none)
plot(bar_index + 1, style = plot.style_histogram)

https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#id8
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#id7
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#id6

Enumerate bars in a day
//@version=5
indicator("My Script", overlay = true, scale = scale.none)

isNewDay() =>
 d = dayofweek
 na(d[1]) or d != d[1]

plot(ta.barssince(isNewDay()), style = plot.style_cross)

Find the highest and lowest values for the entire dataset
//@version=5
indicator("", "", true)

allTimetHi(source) =>
 var atHi = source
 atHi := math.max(atHi, source)

allTimetLo(source) =>
 var atLo = source
 atLo := math.min(atLo, source)

plot(allTimetHi(close), "ATH", color.green)
plot(allTimetLo(close), "ATL", color.red)

Query the last non-na value
You can use the script below to avoid gaps in a series:

//@version=5
indicator("")
series = close >= open ? close : na
vw = fixnan(series)
plot(series, style = plot.style_linebr, color = color.red) // series has na
values
plot(vw) // all na values are replaced with the last non-empty value

Error messages
• The if statement is too long
• Script requesting too many securities
• Script could not be translated from: null
• line 2: no viable alternative at character ‘$’
• Mismatched input <…> expecting <???>
• Loop is too long (> 500 ms)
• Script has too many local variables
• Pine Script ® cannot determine the referencing length of a series. Try using max_bars_back

in the indicator or strategy function

https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#pine-script-cannot-determine-the-referencing-length-of-a-series-try-using-max-bars-back-in-the-indicator-or-strategy-function
https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#pine-script-cannot-determine-the-referencing-length-of-a-series-try-using-max-bars-back-in-the-indicator-or-strategy-function
https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#script-has-too-many-local-variables
https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#loop-is-too-long-500-ms
https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#mismatched-input-expecting
https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#line-2-no-viable-alternative-at-character
https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#script-could-not-be-translated-from-null
https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#script-requesting-too-many-securities
https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#the-if-statement-is-too-long
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#id11
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#id10
https://www.tradingview.com/pine-script-docs/en/v5/Faq.html#id9

The if statement is too long
This error occurs when the indented code inside an if statement is too large for the compiler.
Because of how the compiler works, you won’t receive a message telling you exactly how many
lines of code you are over the limit. The only solution now is to break up your if statement into
smaller parts (functions or smaller if statements). The example below shows a reasonably lengthy if
statement; theoretically, this would throw line 4: if statement is too long.

//@version=5
indicator("My script")

var e = 0
if barstate.islast
 a = 1
 b = 2
 c = 3
 d = 4
 e := a + b + c + d

plot(e)

To fix this code, you could move these lines into their own function:

//@version=5
indicator("My script")

var e = 0
doSomeWork() =>
 a = 1
 b = 2
 c = 3
 d = 4

 result = a + b + c + d

if barstate.islast
 e := doSomeWork()

plot(e)

Script requesting too many securities
The maximum number of securities in script is limited to 40. If you declare a variable as a
request.security function call and then use that variable as input for other variables and
calculations, it will not result in multiple request.security calls. But if you will declare a
function that calls request.security — every call to this function will count as a
request.security call.

It is not easy to say how many securities will be called looking at the source code. Following
example have exactly 3 calls to request.security after compilation:

//@version=5
indicator("Securities count")
a = request.security(syminfo.tickerid, '42', close) // (1) first unique
security call
b = request.security(syminfo.tickerid, '42', close) // same call as above, will
not produce new security call after optimizations

plot(a)
plot(a + 2)

https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#id2
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#id1

plot(b)

sym(p) => // no security call on this line
 request.security(syminfo.tickerid, p, close)
plot(sym('D')) // (2) one indirect call to security
plot(sym('W')) // (3) another indirect call to security

request.security(syminfo.tickerid, timeframe.period, open) // result of this
line is never used, and will be optimized out

Script could not be translated from: null
study($)

Usually this error occurs in version 1 Pine scripts, and means that code is incorrect. Pine Script® of
version 2 (and higher) is better at explaining errors of this kind. So you can try to switch to version
2 by adding a special attribute in the first line. You’ll get line 2: no viable
alternative at character '$'

// @version=2
study($)

line 2: no viable alternative at character ‘$’
This error message gives a hint on what is wrong. $ stands in place of string with script title. For
example:

// @version=2
study("title")

Mismatched input <…> expecting <???>
Same as no viable alternative, but it is known what should be at that place. Example:

//@version=5
indicator("My Script")
 plot(1)

line 3: mismatched input 'plot' expecting 'end of line without
line continuation'

To fix this you should start line with plot on a new line without an indent:

//@version=5
indicator("My Script")
plot(1)

Loop is too long (> 500 ms)
We limit the computation time of loop on every historical bar and realtime tick to protect our
servers from infinite or very long loops. This limit also fail-fast indicators that will take too long to
compute. For example, if you’ll have 5000 bars, and indicator takes 500 milliseconds to compute on
each of bars, it would have result in more than 16 minutes of loading.

//@version=5
indicator("Loop is too long", max_bars_back = 101)

https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#id6
https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#id5
https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#id4
https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#id3

s = 0
for i = 1 to 1e3 // to make it longer
 for j = 0 to 100
 if timestamp(2017, 02, 23, 00, 00) <= time[j] and time[j] <
timestamp(2017, 02, 23, 23, 59)
 s := s + 1
plot(s)

It might be possible to optimize algorithm to overcome this error. In this case, algorithm may be
optimized like this:

//@version=5
indicator("Loop is too long", max_bars_back = 101)
bar_back_at(t) =>
 i = 0
 step = 51
 for j = 1 to 100
 if i < 0
 i := 0
 break
 if step == 0
 break
 if time[i] >= t
 i := i + step
 i
 else
 i := i - step
 i
 step := step / 2
 step
 i

s = 0
for i = 1 to 1e3 // to make it longer
 s := s - bar_back_at(timestamp(2017, 02, 23, 23, 59)) +
 bar_back_at(timestamp(2017, 02, 23, 00, 00))
 s
plot(s)

Script has too many local variables
This error appears if the script is too large to be compiled. A statement var=expression creates
a local variable for var. Apart from this, it is important to note, that auxiliary variables can be
implicitly created during the process of a script compilation. The limit applies to variables created
both explicitly and implicitly. The limitation of 1000 variables is applied to each function
individually. In fact, the code placed in a global scope of a script also implicitly wrapped up into the
main function and the limit of 1000 variables becomes applicable to it. There are few refactorings
you can try to avoid this issue:

var1 = expr1
var2 = expr2
var3 = var1 + var2

can be сonverted into:

var3 = expr1 + expr2

https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#id7

Pine Script ® cannot determine the referencing length of a
series. Try using max_bars_back in the indicator or strategy
function
The error appears in cases where Pine Script® wrongly autodetects the required maximum length of
series used in a script. This happens when a script’s flow of execution does not allow Pine Script®
to inspect the use of series in branches of conditional statements (if, iff or ?), and Pine Script®
cannot automatically detect how far back the series is referenced. Here is an example of a script
causing this problem:

//@version=5
indicator("Requires max_bars_back")
test = 0.0
if bar_index > 1000
 test := ta.roc(close, 20)
plot(test)

In order to help Pine Script® with detection, you should add the max_bars_back parameter to
the script’s indicator or strategy function:

//@version=5
indicator("Requires max_bars_back", max_bars_back = 20)
test = 0.0
if bar_index > 1000
 test := ta.roc(close, 20)
plot(test)

You may also resolve the issue by taking the problematic expression out of the conditional branch,
in which case the max_bars_back parameter is not required:

//@version=5
indicator("My Script")
test = 0.0
roc20 = ta.roc(close, 20)
if bar_index > 1000
 test := roc20
plot(test)

In cases where the problem is caused by a variable rather than a built-in function (vwma in our
example), you may use the max_bars_back function to explicitly define the referencing length
for that variable only. This has the advantage of requiring less runtime resources, but entails that
you identify the problematic variable, e.g., variable s in the following example:

//@version=5
indicator("My Script")
f(off) =>
 t = 0.0
 s = close
 if bar_index > 242
 t := s[off]
 t
plot(f(301))

This situation can be resolved using the max_bars_back function to define the referencing
length of variable s only, rather than for all the script’s variables:

//@version=5
indicator("My Script")

https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#id8
https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#id8
https://www.tradingview.com/pine-script-docs/en/v5/Error_messages.html#id8

f(off) =>
 t = 0.0
 s = close
 max_bars_back(s, 301)
 if bar_index > 242
 t := s[off]
 t
plot(f(301))

When using drawings that refer to previous bars through bar_index[n] and xloc =
xloc.bar_index, the time series received from this bar will be used to position the drawings on
the time axis. Therefore, if it is impossible to determine the correct size of the buffer, this error may
occur. To avoid this, you need to use max_bars_back(time, n). This behavior is described in
more detail in the section about drawings.

To Pine Script® version 5
• Introduction
• v4 to v5 converter
• Renamed functions and variables
• Renamed function parameters
• Removed an `rsi()` overload
• Reserved keywords
• Removed `iff()` and `offset()`
• Split of `input()` into several functions
• Some function parameters now require built-in arguments
• Deprecated the `transp` parameter
• Changed the default session days for `time()` and `time_close()`
• `strategy.exit()` now must do something
• Common script conversion errors
• All variable, function, and parameter name changes

Introduction
This guide documents the changes made to Pine Script® from v4 to v5. It will guide you in the
adaptation of existing Pine scripts to Pine Script® v5. See our Release notes for a list of the new
features in Pine Script® v5.

The most frequent adaptations required to convert older scripts to v5 are:

• Changing study() for indicator() (the function’s signature has not changed).
• Renaming built-in function calls to include their new namespace (e.g., highest() in v4

becomes ta.highest() in v5).
• Restructuring inputs to use the more specialized input.*() functions.
• Eliminating uses of the deprecated transp parameter by using color.new() to

simultaneously define color and transparency for use with the color parameter.

https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dhighest
https://www.tradingview.com/pine-script-reference/v4/#fun_highest
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v4/#fun_study
https://www.tradingview.com/pine-script-docs/en/v5/Release_notes.html#pagereleasenotes-october2021
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#id1
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#all-variable-function-and-parameter-name-changes
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#common-script-conversion-errors
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#strategy-exit-now-must-do-something
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#changed-the-default-session-days-for-time-and-time-close
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#deprecated-the-transp-parameter
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#some-function-parameters-now-require-built-in-arguments
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#split-of-input-into-several-functions
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#removed-iff-and-offset
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#reserved-keywords
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#removed-an-rsi-overload
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#renamed-function-parameters
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#renamed-functions-and-variables
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#v4-to-v5-converter
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#introduction
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Lines_and_boxes.html#max-bars-back-of-time
https://www.tradingview.com/

• If you used the resolution and resolution_gaps parameters in v4’s study(), they
will require changing to timeframe and timeframe_gaps in v5’s indicator().

v4 to v5 converter
The Pine Script® Editor includes a utility to automatically convert v4 scripts to v5. To access it,
open a script with //@version=4 in it and select the “Convert to v5” option in the “More” menu
identified by three dots at the top-right of the Editor’s pane:

Not all scripts can be automatically converted from v4 to v5. If you want to convert the script
manually or if your indicator returns a compilation error after conversion, use the following sections
to determine how to complete the conversion. A list of some errors you can encounter during the
automatic conversion and how to fix them can be found in the Common script conversion errors
section of this guide.

Renamed functions and variables
For clarity and consistency, many built-in functions and variables were renamed in v5. The
inclusion of v4 function names in a new namespace is the cause of most changes. For example, the
sma() function in v4 is moved to the ta. namespace in v5: ta.sma(). Remembering the new
namespaces is not necessary; if you type the older name of a function without its namespace in the
Editor and press the ‘Auto-complete’ hotkey (Ctrl + Space, or Cmd + Space on MacOS), a
popup showing matching suggestions appears:

Not counting functions moved to new namespaces, only two functions have been renamed:

• study() is now indicator().
• tickerid() is now ticker.new().

The full list of renamed functions and variables can be found in the All variable, function, and
parameter name changes section of this guide.

Renamed function parameters
The parameter names of some built-in functions were changed to improve the nomenclature. This
has no bearing on most scripts, but if you used these parameter names when calling functions, they
will require adaptation. For example, we have standardized all mentions:

// Valid in v4. Not valid in v5.
timev4 = time(resolution = "1D")
// Valid in v5.
timev5 = time(timeframe = "1D")
// Valid in v4 and v5.
timeBoth = time("1D")

The full list of renamed function parameters can be found in the All variable, function, and
parameter name changes section of this guide.

https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/v4_to_v5_migration_guide.html#pagetopineversion5-allvariables
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/v4_to_v5_migration_guide.html#pagetopineversion5-allvariables
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#id4
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/v4_to_v5_migration_guide.html#pagetopineversion5-allvariables
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/v4_to_v5_migration_guide.html#pagetopineversion5-allvariables
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker%7Bdot%7Dnew
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dsma
https://www.tradingview.com/pine-script-reference/v4/#fun_sma
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#id3
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/v4_to_v5_migration_guide.html#pagetopineversion5-commonconversionerrors
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#id2
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v4/#fun_study

Removed an `rsi()` overload
In v4, the rsi() function had two different overloads:

• rsi(series float, simple int) for the normal RSI calculation, and
• rsi(series float, series float) for an overload used in the MFI indicator,

which did a calculation equivalent to 100.0 - (100.0 / (1.0 + arg1 /
arg2)).

This caused a single built-in function to behave in two very different ways, and it was difficult to
distinguish which one applied because it depended on the type of the second argument. As a result,
a number of indicators misused the function and were displaying incorrect results. To avoid this, the
second overload was removed in v5.

The ta.rsi() function in v5 only accepts a “simple int” argument for its length parameter. If your
v4 code used the now deprecated overload of the function with a float second argument, you can
replace the whole rsi() call with the following formula, which is equivalent:

100.0 - (100.0 / (1.0 + arg1 / arg2))

Note that when your v4 code used a “series int” value as the second argument to rsi(), it was
automatically cast to “series float” and the second overload of the function was used. While this
was syntactically correct, it most probably did not yield the result you expected. In v5, ta.rsi()
requires a “simple int” for the argument to length, which precludes dynamic (or “series”) lengths.
The reason for this is that RSI calculations use the ta.rma() moving average, which is similar to
ta.ema() in that it relies on a length-dependent recursive process using the values of previous bars.
This makes it impossible to achieve correct results with a “series” length that could vary bar to bar.

If your v4 code used a length that was “const int”, “input int” or “simple int”, no changes are
required.

Reserved keywords
A number of words are reserved and cannot be used for variable or function names. They are:
catch, class, do, ellipse, in, is, polygon, range, return, struct, text, throw,
try. If your v4 indicator uses any of these, rename your variable or function for the script to work
in v5.

Removed `iff()` and `offset()`
The iff() and offset() functions have been removed. Code using the iff() function can be rewritten
using the ternary operator:

// iff(<condition>, <return_when_true>, <return_when_false>)
// Valid in v4, not valid in v5
barColorIff = iff(close >= open, color.green, color.red)
// <condition> ? <return_when_true> : <return_when_false>
// Valid in v4 and v5
barColorTernary = close >= open ? color.green : color.red

Note that the ternary operator is evaluated “lazily”; only the required value is calculated (depending
on the condition’s evaluation to true or false). This is different from iff(), which always
evaluated both values but returned only the relevant one.

Some functions require evaluation on every bar to correctly calculate, so you will need to make
special provisions for these by pre-evaluating them before the ternary:

https://www.tradingview.com/pine-script-reference/v4/#fun_iff
https://www.tradingview.com/pine-script-reference/v4/#fun_iff
https://www.tradingview.com/pine-script-reference/v4/#fun_offset
https://www.tradingview.com/pine-script-reference/v4/#fun_iff
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#id7
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#id6
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Dema
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Drma
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Drsi
https://www.tradingview.com/pine-script-reference/v4/#fun_rsi
https://www.tradingview.com/pine-script-reference/v5/#fun_ta%7Bdot%7Drsi
https://www.tradingview.com/pine-script-reference/v4/#fun_rsi
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#id5

// `iff()` in v4: `highest()` and `lowest()` are calculated on every bar
v1 = iff(close > open, highest(10), lowest(10))
plot(v1)
// In v5: forced evaluation on every bar prior to the ternary statement.
h1 = ta.highest(10)
l1 = ta.lowest(10)
v1 = close > open ? h1 : l1
plot(v1)

The offset() function was deprecated because the more readable [] operator is equivalent:

// Valid in v4. Not valid in v5.
prevClosev4 = offset(close, 1)
// Valid in v4 and v5.
prevClosev5 = close[1]

Split of `input()` into several functions
The v4 input() function was becoming crowded with a plethora of overloads and parameters. We
split its functionality into different functions to clear that space and provide a more robust structure
to accommodate the additions planned for inputs. Each new function uses the name of the
input.* type of the v4 input() call it replaces. E.g., there is now a specialized input.float()
function replacing the v4 input(1.0, type = input.float) call. Note that you can still
use input(1.0) in v5, but because only input.float() allows for parameters such as minval,
maxval, etc., it is more powerful. Also note that input.int() is the only specialized input function
that does not use its equivalent v4 input.integer name. The input.* constants have been
removed because they were used as arguments for the type parameter, which was deprecated.

To convert, for example, a v4 script using an input of type input.symbol, the input.symbol()
function must be used in v5:

// Valid in v4. Not valid in v5.
aaplTicker = input("AAPL", type = input.symbol)
// Valid in v5
aaplTicker = input.symbol("AAPL")

The input() function persists in v5, but in a simpler form, with less parameters. It has the advantage
of automatically detecting input types “bool/color/int/float/string/source” from the argument used
for defval:

// Valid in v4 and v5.
// While "AAPL" is a valid symbol, it is only a string here because
`input.symbol()` is not used.
tickerString = input("AAPL", title = "Ticker string")

Some function parameters now require built-in arguments
In v4, built-in constants such as plot.style_area used as arguments when calling Pine Script®

functions corresponded to pre-defined values of a specific type. For example, the value of
barmerge.lookahead_on was true, so you could use true instead of the named constant
when supplying an argument to the lookahead parameter in a security() function call. We found
this to be a common source of confusion, which caused unsuspecting programmers to produce code
yielding unintended results.

In v5, the use of correct built-in named constants as arguments to function parameters requiring
them is mandatory:

https://www.tradingview.com/pine-script-reference/v4/#fun_security
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#id9
https://www.tradingview.com/pine-script-reference/v5/#fun_input
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsymbol
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dint
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dfloat
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dfloat
https://www.tradingview.com/pine-script-reference/v4/#fun_input
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#id8
https://www.tradingview.com/pine-script-reference/v5/#op_[]
https://www.tradingview.com/pine-script-reference/v4/#fun_offset

// Not valid in v5: `true` is used as an argument for `lookahead`.
request.security(syminfo.tickerid, "1D", close, lookahead = true)
// Valid in v5: uses a named constant instead of `true`.
request.security(syminfo.tickerid, "1D", close, lookahead =
barmerge.lookahead_on)

// Would compile in v4 because `plot.style_columns` was equal to 5.
// Won’t compile in v5.
a = 2 * plot.style_columns
plot(a)

To convert your script from v4 to v5, make sure you use the correct named built-in constants as
function arguments.

Deprecated the `transp` parameter
The transp= parameter used in the signature of many v4 plotting functions was deprecated
because it interfered with RGB functionality. Transparency must now be specified along with the
color as an argument to parameters such as color, textcolor, etc. The color.new() or
color.rgb() functions will be needed in those cases to join a color and its transparency.

Note that in v4, the bgcolor() and fill() functions had an optional transp parameter that used a
default value of 90. This meant that the code below could display Bollinger Bands with a semi-
transparent fill between two bands and a semi-transparent backround color where bands cross price,
even though no argument is used for the transp parameter in its bgcolor() and fill() calls:

//@version=4
study("Bollinger Bands", overlay = true)
[middle, upper, lower] = bb(close, 5, 4)
plot(middle, color=color.blue)
p1PlotID = plot(upper, color=color.green)
p2PlotID = plot(lower, color=color.green)
crossUp = crossover(high, upper)
crossDn = crossunder(low, lower)
// Both `fill()` and `bgcolor()` have a default `transp` of 90
fill(p1PlotID, p2PlotID, color = color.green)
bgcolor(crossUp ? color.green : crossDn ? color.red : na)

In v5 we need to explictly mention the 90 transparency with the color, yielding:

//@version=5
indicator("Bollinger Bands", overlay = true)
[middle, upper, lower] = ta.bb(close, 5, 4)
plot(middle, color=color.blue)
p1PlotID = plot(upper, color=color.green)
p2PlotID = plot(lower, color=color.green)
crossUp = ta.crossover(high, upper)
crossDn = ta.crossunder(low, lower)
var TRANSP = 90
// We use `color.new()` to explicitly pass transparency to both functions
fill(p1PlotID, p2PlotID, color = color.new(color.green, TRANSP))
bgcolor(crossUp ? color.new(color.green, TRANSP) : crossDn ?
color.new(color.red, TRANSP) : na)

Changed the default session days for `time()` and
`time_close()`
The default set of days for session strings used in the time() and time_close() functions, and

https://www.tradingview.com/pine-script-reference/v5/#fun_time_close
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#id11
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#id11
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Drgb
https://www.tradingview.com/pine-script-reference/v5/#fun_color%7Bdot%7Dnew
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#id10

returned by input.session(), has changed from "23456" (Monday to Friday) to "1234567"
(Sunday to Saturday):

// On symbols that are traded during weekends, this will behave differently in
v4 and v5.
t0 = time("1D", "1000-1200")
// v5 equivalent of the behavior of `t0` in v4.
t1 = time("1D", "1000-1200:23456")
// v5 equivalent of the behavior of `t0` in v5.
t2 = time("1D", "1000-1200:1234567")

This change in behavior should not have much impact on scripts running on conventional markets
that are closed during weekends. If it is important for you to ensure your session definitions
preserve their v4 behavior in v5 code, add ":23456" to your session strings. See this manual’s
page on Sessions for more information.

`strategy.exit()` now must do something
Gone are the days when the strategy.exit() function was allowed to loiter. Now it must actually have
an effect on the strategy by using at least one of the following parameters: profit, limit, loss,
stop, or one of the following pairs: trail_offset combined with either trail_price or
trail_points. When uses of strategy.exit() not meeting these criteria trigger an error while
converting a strategy to v5, you can safely eliminate these lines, as they didn’t do anything in your
code anyway.

Common script conversion errors

Invalid argument ‘style’/’linestyle’ in ‘plot’/’hline’ call

To make this work, you need to change the “int” arguments used for the style and linestyle
arguments in plot() and hline() for built-in constants:

// Will cause an error during conversion
plotStyle = input(1)
hlineStyle = input(1)
plot(close, style = plotStyle)
hline(100, linestyle = hlineStyle)

// Will work in v5
//@version=5
indicator("")
plotStyleInput = input.string("Line", options = ["Line", "Stepline",
"Histogram", "Cross", "Area", "Columns", "Circles"])
hlineStyleInput = input.string("Solid", options = ["Solid", "Dashed", "Dotted"])

plotStyle = plotStyleInput == "Line" ? plot.style_line :
 plotStyleInput == "Stepline" ? plot.style_stepline :
 plotStyleInput == "Histogram" ? plot.style_histogram :
 plotStyleInput == "Cross" ? plot.style_cross :
 plotStyleInput == "Area" ? plot.style_area :
 plotStyleInput == "Columns" ? plot.style_columns :
 plot.style_circles

hlineStyle = hlineStyleInput == "Solid" ? hline.style_solid :
 hlineStyleInput == "Dashed" ? hline.style_dashed :
 hline.style_dotted

plot(close, style = plotStyle)

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclose
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dentry
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#id13
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dexit
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#id12
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Sessions.html#pagesessions
https://www.tradingview.com/pine-script-reference/v5/#fun_input%7Bdot%7Dsession

hline(100, linestyle = hlineStyle)

See the Some function parameters now require built-in arguments section of this guide for more
information.

Undeclared identifier ‘input.%input_name%’

To fix this issue, remove the input.* constants from your code:

// Will cause an error during conversion
_integer = input.integer
_bool = input.bool
i1 = input(1, "Integer", _integer)
i2 = input(true, "Boolean", _bool)

// Will work in v5
i1 = input.int(1, "Integer")
i2 = input.bool(true, "Boolean")

See the User Manual’s page on Inputs, and the Some function parameters now require built-in
arguments section of this guide for more information.

Invalid argument ‘when’ in ‘strategy.close’ call

This is caused by a confusion between strategy.entry() and strategy.close().

The second parameter of strategy.close() is when, which expects a “bool” argument. In v4, it was
allowed to use strategy.long an argument because it was a “bool”. With v5, however, named
built-in constants must be used as arguments, so strategy.long is no longer allowed as an
argument to the when parameter.

The strategy.close("Short", strategy.long) call in this code is equivalent to
strategy.close("Short"), which is what must be used in v5:

// Will cause an error during conversion
if (longCondition)
 strategy.close("Short", strategy.long)
 strategy.entry("Long", strategy.long)

// Will work in v5:
if (longCondition)
 strategy.close("Short")
 strategy.entry("Long", strategy.long)

See the Some function parameters now require built-in arguments section of this guide for more
information.

Cannot call ‘input.int’ with argument ‘minval’=’%value%’. An argument of
‘literal float’ type was used but a ‘const int’ is expected

In v4, it was possible to pass a “float” argument to minval when an “int” value was being input.
This is no longer possible in v5; “int” values are required for “int” inputs:

// Works in v4, will break on conversion because minval is a 'float' value
int_input = input(1, "Integer", input.integer, minval = 1.0)

// Works in v5
int_input = input.int(1, "Integer", minval = 1)

https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/To_Pine_version_5.html#id14
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/v4_to_v5_migration_guide.html#pagetopineversion5-somefunctionparametersnowrequirebuiltinarguments
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/v4_to_v5_migration_guide.html#pagetopineversion5-somefunctionparametersnowrequirebuiltinarguments
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#pageinputs
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/v4_to_v5_migration_guide.html#pagetopineversion5-somefunctionparametersnowrequirebuiltinarguments
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy%7Bdot%7Dclose
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/v4_to_v5_migration_guide.html#pagetopineversion5-somefunctionparametersnowrequirebuiltinarguments
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/v4_to_v5_migration_guide.html#pagetopineversion5-somefunctionparametersnowrequirebuiltinarguments
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Inputs.html#pageinputs
https://www.tradingview.com/pine-script-docs/en/v5/migration_guides/v4_to_v5_migration_guide.html#pagetopineversion5-somefunctionparametersnowrequirebuiltinarguments

See the User Manual’s page on Inputs, and the Some function parameters now require built-in
arguments section of this guide for more information.

All variable, function, and parameter name changes

Removed functions and variables

v4 v5

input.bool input Replaced by
input.bool()

input.color input Replaced by
input.color()

input.float input Replaced by
input.float()

input.integer
input

Replaced by
input.int()

input.resolution
input

Replaced by
input.timeframe
()

input.session
input

Replaced by
input.session()

input.source input Replaced by
input.source()

input.string input Replaced by
input.string()

input.symbol input Replaced by
input.symbol()

input.time input Replaced by
input.time()

iff() Use the ?: operator
instead

offset() Use the [] operator
instead

Renamed functions and parameters

No namespace change

v4 v5

study(<...>,
resolution,
resolution_gaps
, <...>)

indicator(<...>,
timeframe,
timeframe_gaps,
<...>)

strategy.entry(
long)

strategy.entry(d
irection)

strategy.order(
long)

strategy.order(d
irection)

time(resolution
)

time(timeframe)

time_close(reso
lution)

time_close(timef
rame)

nz(x, y) nz(source,
replacement)

“ta” namespace for technical analysis functions and variables

v4 v5

Indicator functions and variables

accdist ta.accdist

alma() ta.alma()

atr() ta.atr()

bb() ta.bb()

bbw() ta.bbw()

cci() ta.cci()

cmo() ta.cmo()

cog() ta.cog()

dmi() ta.dmi()

ema() ta.ema()

hma() ta.hma()

iii ta.iii

kc() ta.kc()

kcw() ta.kcw()

linreg() ta.linreg()

macd() ta.macd()

mfi() ta.mfi()

mom() ta.mom()

nvi ta.nvi

obv ta.obv

pvi ta.pvi

pvt ta.pvt

rma() ta.rma()

roc() ta.roc()

rsi(x, y) ta.rsi(source,
length)

sar() ta.sar()

sma() ta.sma()

stoch() ta.stoch()

supertrend() ta.supertrend()

swma(x) ta.swma(source)

tr ta.tr

tr() ta.tr()

tsi() ta.tsi()

vwap ta.vwap

vwap(x) ta.vwap(source)

vwma() ta.vwma()

wad ta.wad

wma() ta.wma()

wpr() ta.wpr()

wvad ta.wvad

Supporting functions

barsince() ta.barsince()

change() ta.change()

correlation(s
ource_a,
source_b,
length)

ta.correlation(
source1,
source2,
length)

cross(x, y) ta.cross(source
1, source2)

crossover(x,
y)

ta.crossover(so
urce1, source2)

crossunder(x,
y)

ta.crossunder(s
ource1,
source2)

cum(x) ta.cum(source)

dev() ta.dev()

falling() ta.falling()

highest() ta.highest()

highestbars() ta.highestbars(
)

lowest() ta.lowest()

lowestbars() ta.lowestbars()

median() ta.median()

mode() ta.mode()

percentile_li
near_interpol
ation()

ta.percentile_l
inear_interpola
tion()

percentile_ne
arest_rank()

ta.percentile_n
earest_rank()

percentrank() ta.percentrank(
)

pivothigh() ta.pivothigh()

pivotlow() ta.pivotlow()

range() ta.range()

rising() ta.rising()

stdev() ta.stdev()

valuewhen() ta.valuewhen()

variance() ta.variance()

“math” namespace for math-related functions and variables

v4 v5

abs(x) math.abs(numbe
r)

acos(x) math.acos(numb
er)

asin(x) math.asin(numb
er)

atan(x) math.atan(numb
er)

avg() math.avg()

ceil(x) math.ceil(numb
er)

cos(x) math.cos(angle
)

exp(x) math.exp(numbe
r)

floor(x) math.floor(num
ber)

log(x) math.log(numbe
r)

log10(x) math.log10(num
ber)

max() math.max()

min() math.min()

pow() math.pow()

random() math.random()

round(x,
precision
)

math.round(num
ber,
precision)

	First steps
	Introduction
	Using scripts
	Loading scripts from the chart
	Browsing Community Scripts
	Changing script settings

	Reading scripts
	Writing scripts

	First indicator
	The Pine Script® Editor
	First version
	Second version

	Next steps
	“indicators” vs “strategies”
	How scripts are executed
	Time series
	Publishing scripts
	Getting around the Pine Script® documentation
	Where to go from here?

	Execution model
	Calculation based on historical bars
	Calculation based on realtime bars
	Events triggering the execution of a script
	More information
	Historical values of functions
	Why this behavior?
	Exceptions

	Time series
	Script structure
	Version
	Declaration statement
	Code
	Comments
	Line wrapping
	Compiler annotations

	Identifiers
	Operators
	Introduction
	Arithmetic operators
	Comparison operators
	Logical operators
	`?:` ternary operator
	`[]` history-referencing operator
	Operator precedence
	`=` assignement operator
	`:=` reassignement operator

	Variable declarations
	Introduction
	Initialization with `na`
	Tuple declarations

	Variable reassignment
	Declaration modes
	On each bar
	`var`
	`varip`

	Conditional structures
	Introduction
	`if` structure
	`if` used for its side effects
	`if` used to return a value

	`switch` structure
	`switch` with an expression
	`switch` without an expression

	Matching local block type requirement

	Loops
	Introduction
	When loops are not needed
	When loops are necessary

	`for`
	`while`

	Type system
	Introduction
	Forms
	Types

	Using forms and types
	Forms
	const
	input
	simple
	series

	Types
	int
	float
	bool
	color
	string
	plot and hline
	line, linefill, label, box and table
	Collections
	User-defined types
	void

	`na` value
	Type templates
	Type casting
	Tuples

	Built-ins
	Introduction
	Built-in variables
	Built-in functions

	User-defined functions
	Introduction
	Single-line functions
	Multi-line functions
	Scopes in the script
	Functions that return multiple results
	Limitations

	Objects
	Introduction
	Creating objects
	Changing field values
	Collecting objects
	Copying objects
	Shadowing

	Methods
	Introduction
	Built-in methods
	User-defined methods
	Method overloading
	Advanced example

	Arrays
	Introduction
	Declaring arrays
	Using `var` and `varip` keywords

	Reading and writing array elements
	Looping through array elements
	Scope
	History referencing
	Inserting and removing array elements
	Inserting
	Removing
	Using an array as a stack
	Using an array as a queue

	Calculations on arrays
	Manipulating arrays
	Concatenation
	Copying
	Joining
	Sorting
	Reversing
	Slicing

	Searching arrays
	Error handling
	Index xx is out of bounds. Array size is yy
	Cannot call array methods when ID of array is ‘na’
	Array is too large. Maximum size is 100000
	Cannot create an array with a negative size
	Cannot use shift() if array is empty.
	Cannot use pop() if array is empty.
	Index ‘from’ should be less than index ‘to’
	Slice is out of bounds of the parent array

	Matrices
	Introduction
	Declaring a matrix
	Using `var` and `varip` keywords

	Reading and writing matrix elements
	`matrix.get()` and `matrix.set()`
	`matrix.fill()`

	Rows and columns
	Retrieving
	Inserting
	Removing
	Swapping
	Replacing

	Looping through a matrix
	`for`
	`for…in`

	Copying a matrix
	Shallow copies
	Deep copies
	Submatrices

	Scope and history
	Inspecting a matrix
	Manipulating a matrix
	Reshaping
	Reversing
	Transposing
	Sorting
	Concatenating

	Matrix calculations
	Element-wise calculations
	Special calculations
	`matrix.sum()` and `matrix.diff()`
	`matrix.mult()`
	`matrix.det()`
	`matrix.inv()` and `matrix.pinv()`
	`matrix.rank()`

	Error handling
	The row/column index (xx) is out of bounds, row/column size is (yy).
	The array size does not match the number of rows/columns in the matrix.
	Cannot call matrix methods when the ID of matrix is ‘na’.
	Matrix is too large. Maximum size of the matrix is 100,000 elements.
	The row/column index must be 0 <= from_row/column < to_row/column.
	Matrices ‘id1’ and ‘id2’ must have an equal number of rows and columns to be added.
	The number of columns in the ‘id1’ matrix must equal the number of rows in the matrix (or the number of elements in the array) ‘id2’.
	Operation not available for non-square matrices.

	Maps
	Introduction
	Declaring a map
	Using `var` and `varip` keywords

	Reading and writing
	Putting and getting key-value pairs
	Inspecting keys and values
	`map.keys()` and `map.values()`
	`map.contains()`

	Removing key-value pairs
	Combining maps

	Looping through a map
	Copying a map
	Shallow copies
	Deep copies

	Scope and history
	Maps of other collections

	Alerts
	Introduction
	Background
	Which type of alert is best?

	Script alerts
	`alert()` function events
	Using all `alert()` calls
	Using selective `alert()` calls
	In strategies

	Order fill events

	`alertcondition()` events
	Using one condition
	Using compound conditions
	Placeholders

	Avoiding repainting with alerts

	Backgrounds
	Bar coloring
	Bar plotting
	Introduction
	Plotting candles with `plotcandle()`
	Plotting bars with `plotbar()`

	Bar states
	Introduction
	Bar state built-in variables
	`barstate.isfirst`
	`barstate.islast`
	`barstate.ishistory`
	`barstate.isrealtime`
	`barstate.isnew`
	`barstate.isconfirmed`
	`barstate.islastconfirmedhistory`

	Example

	Chart information
	Introduction
	Prices and volume
	Symbol information
	Chart timeframe
	Session information

	Colors
	Introduction
	Transparency
	Z-index

	Constant colors
	Conditional coloring
	Calculated colors
	color.new()
	color.rgb()
	color.from_gradient()

	Mixing transparencies
	Tips
	Designing usable colors schemes
	Plot crisp lines
	Customize gradients
	Color selection through script settings

	Fills
	Introduction
	`plot()` and `hline()` fills
	Line fills

	Inputs
	Introduction
	Input functions
	Input function parameters
	Input types
	Simple input
	Integer input
	Float input
	Boolean input
	Color input
	Timeframe input
	Symbol input
	Session input
	Source input
	Time input

	Other features affecting Inputs
	Tips

	Levels
	`hline()` levels
	Fills between levels

	Libraries
	Introduction
	Creating a library
	Library functions
	Argument form control
	User-defined types and objects

	Publishing a library
	House Rules

	Using a library

	Lines and boxes
	Introduction
	Lines
	Creating lines
	Modifying lines
	Line styles
	Getting line properties
	Cloning lines
	Deleting lines

	Boxes
	Creating boxes
	Modifying boxes
	Box styles
	Getting box properties
	Cloning boxes
	Deleting boxes

	Realtime behavior
	Limitations
	Total number of objects
	Future references with `xloc.bar_index`
	Additional securities
	Historical buffer and `max_bars_back`

	Examples
	Pivot Points Standard
	Pivot Points High/Low
	Linear Regression
	Zig Zag

	Non-standard charts data
	Introduction
	`ticker.heikinashi()`
	`ticker.renko()`
	`ticker.linebreak()`
	`ticker.kagi()`
	`ticker.pointfigure()`

	Plots
	Introduction
	`plot()` parameters
	Plotting conditionally
	Value control
	Color control

	Levels
	Offsets
	Plot count limit
	Scale
	Merging two indicators

	Repainting
	Introduction
	For script users
	For Pine Script® programmers

	Historical vs realtime calculations
	Fluid data values
	Repainting `request.security()` calls
	Using `request.security()` at lower timeframes
	Future leak with `request.security()`
	`varip`
	Bar state built-ins
	`timenow`
	Strategies

	Plotting in the past
	Dataset variations
	Starting points
	Revision of historical data

	Sessions
	Introduction
	Session strings
	Session string specifications
	Using session strings

	Session states
	Using sessions with `request.security()`

	Strategies
	Introduction
	A simple strategy example
	Applying a strategy to a chart
	Strategy tester
	Overview
	Performance summary
	List of trades
	Properties

	Broker emulator
	Bar magnifier

	Orders and entries
	Order types
	Market orders
	Limit orders
	Stop and stop-limit orders

	Order placement commands
	`strategy.entry()`
	`strategy.order()`
	`strategy.exit()`
	`strategy.close()` and `strategy.close_all()`
	`strategy.cancel()` and `strategy.cancel_all()`

	Position sizing
	Closing a market position
	OCA groups
	`strategy.oca.cancel`
	`strategy.oca.reduce`
	`strategy.oca.none`

	Currency
	Altering calculation behavior
	`calc_on_every_tick`
	`calc_on_order_fills`
	`process_orders_on_close`

	Simulating trading costs
	Commission
	Slippage and unfilled limits

	Risk management
	Margin
	Strategy Alerts
	Notes on testing strategies
	Backtesting and forward testing
	Lookahead bias
	Selection bias
	Overfitting

	Tables
	Introduction
	Creating tables
	Placing a single value in a fixed position
	Coloring the chart’s background
	Creating a display panel
	Displaying a heatmap

	Tips

	Text and shapes
	Introduction
	`plotchar()`
	`plotshape()`
	`plotarrow()`
	Labels
	Creating and modifying labels
	Positioning labels
	Reading label properties
	Cloning labels
	Deleting labels
	Realtime behavior

	Time
	Introduction
	Four references
	Time built-ins
	Time zones
	Time zone strings

	Time variables
	`time` and `time_close`
	`time_tradingday`
	`timenow`
	Calendar dates and times
	`syminfo.timezone()`

	Time functions
	`time()` and `time_close()`
	Testing for sessions
	Testing for changes in higher timeframes

	Calendar dates and times
	`timestamp()`

	Formatting dates and time

	Timeframes
	Introduction
	Timeframe string specifications
	Comparing timeframes

	Style guide
	Introduction
	Naming Conventions
	Script organization
	<license>
	<version>
	<declaration_statement>
	<import_statements>
	<constant_declarations>
	<inputs>
	<function_declarations>
	<calculations>
	<strategy_calls>
	<visuals>
	<alerts>

	Spacing
	Line wrapping
	Vertical alignment
	Explicit typing

	Debugging
	Introduction
	The lay of the land
	Displaying numeric values
	When the script’s scale is unimportant
	When the script’s scale must be preserved

	Displaying strings
	Labels on each bar
	Labels on last bar

	Debugging conditions
	Single conditions
	Compound conditions

	Debugging from inside functions
	Debugging from inside `for` loops
	Extracting a single value
	Using lines and labels
	Extracting multiple values

	Tips

	Publishing scripts
	Script visibility and access
	When you publish a script
	Visibility
	Public
	Private

	Access
	Open
	Protected
	Invite-only

	Preparing a publication
	Publishing a script
	Updating a publication
	Introduction
	Time
	Script compilation
	Script execution
	Loop execution

	Chart visuals
	Plot limits
	Line, box, and label limits
	Table limits

	`request.*()` calls
	Number of calls
	Intrabars
	Tuple element limit

	Script size and memory
	Compiled tokens
	Local blocks
	Variables
	Collections

	Other limitations
	Maximum bars back
	Maximum bars forward
	Chart bars
	Trade orders in backtesting

	FAQ
	Get real OHLC price on a Heikin Ashi chart
	Get non-standard OHLC values on a standard chart
	Plot arrows on the chart
	Plot a dynamic horizontal line
	Plot a vertical line on condition
	Access the previous value
	Get a 5-days high
	Count bars in a dataset
	Enumerate bars in a day
	Find the highest and lowest values for the entire dataset
	Query the last non-na value

	Error messages
	The if statement is too long
	Script requesting too many securities
	Script could not be translated from: null
	line 2: no viable alternative at character ‘$’
	Mismatched input <…> expecting <???>
	Loop is too long (> 500 ms)
	Script has too many local variables
	Pine Script® cannot determine the referencing length of a series. Try using max_bars_back in the indicator or strategy function

	To Pine Script® version 5
	Introduction
	v4 to v5 converter
	Renamed functions and variables
	Renamed function parameters
	Removed an `rsi()` overload
	Reserved keywords
	Removed `iff()` and `offset()`
	Split of `input()` into several functions
	Some function parameters now require built-in arguments
	Deprecated the `transp` parameter
	Changed the default session days for `time()` and `time_close()`
	`strategy.exit()` now must do something
	Common script conversion errors
	Invalid argument ‘style’/’linestyle’ in ‘plot’/’hline’ call
	Undeclared identifier ‘input.%input_name%’
	Invalid argument ‘when’ in ‘strategy.close’ call
	Cannot call ‘input.int’ with argument ‘minval’=’%value%’. An argument of ‘literal float’ type was used but a ‘const int’ is expected

	All variable, function, and parameter name changes
	Removed functions and variables
	Renamed functions and parameters
	No namespace change
	“ta” namespace for technical analysis functions and variables
	“math” namespace for math-related functions and variables
	“request” namespace for functions that request external data
	“ticker” namespace for functions that help create tickers
	“str” namespace for functions that manipulate strings

